- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- 大模型·知识蒸馏·学习笔记
小先生00101
笔记人工智能神经网络机器学习自然语言处理深度学习语言模型
第一部分:核心概念入门1.1什么是知识蒸馏?核心问题:深度学习模型(如大型神经网络)虽然性能强大,但其巨大的参数量和计算需求使其难以部署到手机、嵌入式设备等资源受限的平台。核心思想:知识蒸馏是一种模型压缩和优化的技术,其灵感来源于“教师-学生”范式。我们先训练一个复杂但性能强大的“教师模型”,然后利用这个教师模型来指导一个轻量级的“学生模型”进行学习。生动的比喻(Hinton,2015):这个过程
- 大模型分布式训练deepspeed环境搭建
transformer变压器
分布式人工智能
1.deepspeed介绍1.1简介DeepSpeed是一个由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。它通过多种技术手段来加速训练,包括模型并行化、梯度累积、动态精度缩放、本地模式混合精度等。DeepSpeed还提供了一些辅助工具,如分布式训练管理、内存优化和模型压缩等,以帮助开发者更好地管理和优化大规模深度学习训练任务。此外,deepspeed基于pytorch构建
- 教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践
观熵
人工智能DeepSeek私有化部署
教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践关键词:私有化部署、知识蒸馏、教师模型、学生模型、协同蒸馏、蒸馏训练、边缘部署、模型压缩、国产大模型、自监督微调摘要:随着国产大模型在企业私有化环境中的广泛部署,模型的压缩与推理性能优化成为核心挑战之一。本文聚焦“教师-学生协同知识蒸馏机制”在私有化系统中的实际融合路径,系统分析从教师模型选择、蒸馏数据构建、协同训练框
- AI原生应用性能优化:LLM模型压缩与加速方案
AI原生应用开发
AI-nativeai
AI原生应用性能优化:LLM模型压缩与加速方案关键词:AI原生应用、性能优化、LLM模型、模型压缩、加速方案摘要:本文聚焦于AI原生应用的性能优化,重点探讨了LLM(大语言模型)的模型压缩与加速方案。通过通俗易懂的语言,从背景知识入手,深入解释核心概念,阐述算法原理,给出实际代码案例,介绍应用场景、工具资源,分析未来趋势与挑战等,旨在让读者全面了解如何对LLM模型进行压缩与加速,以提升AI原生应用
- YOLO 在无人机视频流中的部署实践:从低延迟推理到边缘智能协同
YOLO在无人机视频流中的部署实践:从低延迟推理到边缘智能协同关键词:YOLOv8、无人机视频流、边缘部署、RTSP、低延迟推理、实时检测、JetsonOrin、RK3588、模型压缩摘要:随着无人机在巡检、安防、农业、物流等场景的广泛应用,如何将高效的目标检测模型部署在无人机或其边缘计算模块上,成为一项关键挑战。YOLO系列模型以其高性能、低延迟特性,已被广泛应用于实时视频流的智能感知任务。本文
- AI+法律,能不能帮我打官司?——聊聊自动化法律分析那些事儿
Echo_Wish
Python进阶人工智能自动化运维
AI+法律,能不能帮我打官司?——聊聊自动化法律分析那些事儿朋友们大家好,我是你们熟悉的Echo_Wish。今天咱们不讲图像识别、不聊大模型压缩,也不搞无人机降落——今天咱搞点“法理情”的结合,聊聊人工智能在法律分析中的自动化落地实践。这几年,“AI改变行业”是老生常谈了,但你知道吗?有一个行业,既复杂、规则化强、文本数据多、人才极度紧缺,又一直被认为是“最不可能被AI替代的职业”之一——那就是法
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
king of code porter
深度学习深度学习剪枝人工智能
一、背景:为什么需要模型剪枝?随着深度学习的发展,模型参数量和计算量呈指数级增长。以ResNet18为例,其在ImageNet上的参数量约为1100万,虽然在服务器端运行流畅,但在移动端或嵌入式设备上部署时,内存和计算资源的限制使得直接使用大模型变得困难。模型剪枝(ModelPruning)作为模型压缩的核心技术之一,通过删除冗余的神经元或通道,在保持模型性能的前提下显著降低模型大小和计算量,是解
- 深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
king of code porter
深度学习深度学习剪枝人工智能
一、引言在深度学习中,我们训练出的神经网络往往非常庞大(比如像ResNet、YOLOv8、VisionTransformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄像头、机器人等资源受限的设备上。于是我们就想出了一个办法:给模型“瘦身”,让它又快又轻,还能保持不错的准确率。这就是——模型压缩!模型压缩有三种最常用的方法:模型剪枝模型量化知识蒸馏下面我们分别来通
- AI人工智能领域DALL·E 2的技术优化方向
AI大模型应用工坊
人工智能DALL·E2ai
AI人工智能领域DALL·E2的技术优化方向关键词:DALL·E2、文本到图像生成、扩散模型、计算效率、图像质量、多模态学习、模型压缩摘要:本文深入探讨了OpenAI的DALL·E2模型在人工智能领域的技术优化方向。我们将从模型架构、训练方法、计算效率、图像质量提升等多个维度进行分析,提出具体的优化策略和技术路线。文章不仅涵盖了理论基础,还提供了实际的代码实现和数学推导,帮助读者全面理解如何提升文
- FP16 混合精度在移动端 NPU 上的支持与性能压榨路径:架构差异 × 模型兼容 × 工程落地全解析
观熵
国产NPU×Android推理优化架构neo4j人工智能
FP16混合精度在移动端NPU上的支持与性能压榨路径:架构差异×模型兼容×工程落地全解析关键词FP16、混合精度、移动端NPU、国产芯片、TensorFlowLite、NNAPI、模型压缩、图优化、精度漂移、硬件加速、算子支持、高效推理摘要随着国产NPU芯片在手机、边缘端等设备的广泛部署,FP16(HalfPrecisionFloatingPoint)因其在计算效率、内存带宽、功耗方面的综合优势,
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(3)
引言前面的文章《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)》和《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(2)》有做了相应的裁剪说明和实践,但是只是对其中的一个层进行采集的,这篇文章是记录对ResNet18中所有的残差层进行采集的一个过程。当然,前面也提到第一层是没有进行裁剪的,原因可以自己翻看前面的原因,后面也会有提到。一、ResNet18模型结构
- 机器学习小白必看:从零开始的模型压缩与优化
人工智能教程
机器学习人工智能自然语言处理cnn分类深度学习线性回归
在机器学习和深度学习领域,模型压缩与优化是一个非常重要且实用的话题。随着模型规模的不断增大,如何在保持模型性能的同时减少模型的存储和计算开销,成为了一个亟待解决的问题。本文将从零开始,带你了解模型压缩与优化的基本概念、常用方法以及如何在实际项目中应用这些技术。一、模型压缩与优化的背景在实际应用中,深度学习模型往往需要大量的计算资源和存储空间。例如,一个典型的卷积神经网络(CNN)可能包含数百万甚至
- 大模型解密之---模型蒸馏
forever0827
人工智能深度学习语言模型自然语言处理文心一言gpt-3机器学习
模型蒸馏:知识的传承艺术想象一下,你有一位学识渊博、经验丰富但年事已高、行动缓慢的“老教授”,也有一位年轻、敏捷、学习能力强的“研究生”。我们希望这位研究生能快速掌握老教授的毕生所学,但不是通过死记硬背教授的所有著作,而是通过聆听教授的“思维过程”来学习。这就是模型蒸馏的核心思想。描述(Description):模型蒸馏是一种模型压缩和知识迁移的技术。其目标是将一个大型、复杂、强大的“教师模型(T
- 算法在嵌入式端的部署与优化
早日退休!!!
硬件算法嵌入式硬件
算法在嵌入式端的部署与优化前言理论1.参考资源2.其他1.将深度学习模型移植到嵌入式端时,提高推理速度的方法2.深度学习模型移植到嵌入式端的主要流程3.假设将已经训练好的目标检测模型(比如YOLOv3)移植到树莓派4B这样一款嵌入式设备上,并且需要保证推理速度达到实时。具体流程如下4.在树莓派上使用ncnn推理引擎,可以采取以下措施提高推理速度5.先进行模型压缩再用推理模型部署是一种常见的深度学习
- AI算力网络与通信中量化技术的挑战与机遇
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能网络ai
AI算力网络与通信中量化技术的挑战与机遇关键词:AI算力网络、量化技术、通信优化、模型压缩、分布式计算摘要:随着AI应用的爆发式增长,算力需求与网络通信压力同步激增。量化技术作为连接AI算力网络与通信效率的关键桥梁,通过降低数据精度压缩模型规模、减少传输开销,成为解决“算力-通信”矛盾的核心技术。本文将从生活场景出发,用“快递网络”“语言翻译”等通俗比喻,拆解AI算力网络与量化技术的底层逻辑,结合
- 什么是知识蒸馏?如何做模型蒸馏?结合案例说明
一、什么是蒸馏?核心概念:在机器学习中,“蒸馏”指的是知识蒸馏。这是一种模型压缩技术,其核心思想是将一个大型、复杂、性能优越但计算成本高的模型(称为“教师模型”)所蕴含的“知识”或“智慧”,转移给一个小型、简单、计算效率高的模型(称为“学生模型”)。类比:就像化学中的蒸馏过程,通过加热和冷凝分离混合物中的组分,知识蒸馏试图从复杂教师模型的“知识混合物”中,提取出最精华、最核心的模式和关系,并将其“
- RAG模型效果优化全攻略:多维度策略优化RAG模型性能的关键技术与方法(RAG优化)
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能RAG智能体知识库self-ragrerank
:RAG在大模型实际落地的时候,存在一些问题,主要集中在以下方面:缺少垂直领域知识:虽然大模型压缩了大量的人类知识,但在垂直场景上明显存在短板,需要专业化的服务去解决特定问题。存在幻觉、应用有一定门槛:在大模型使用上有一些幻觉、合规问题,没有办法很好地落地,配套工作不足,缺乏现成的方案来管理非结构化文本、进行测试、运营和管理等。存在重复建设:各业务孤立摸索,资产无法沉淀,存在低水平重复建设,对公司
- AI持续学习模型压缩与加速方法大全
AI智能探索者
人工智能学习ai
AI持续学习模型压缩与加速方法大全关键词:模型压缩、模型加速、持续学习、知识蒸馏、模型剪枝、量化、轻量化架构摘要:本文全面解析AI持续学习场景下的模型压缩与加速技术。从核心概念到具体方法,结合生活案例、代码示例与实战场景,系统讲解剪枝、量化、知识蒸馏等主流技术的原理与应用,帮助读者理解如何在持续学习中平衡模型性能与资源消耗,最终实现高效、可扩展的AI系统。背景介绍目的和范围随着AI技术普及,模型规
- 【深度学习新浪潮】什么是混合精度分解?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能算法大模型语言模型LLMs
混合精度分解是大模型压缩领域的一项核心技术,通过将模型参数或计算过程分解为不同精度的子单元,在保持性能的同时显著降低存储和计算成本。其核心思想是对模型中敏感度高、信息量大的部分采用高精度表示,而对冗余度高、敏感度低的部分采用低精度表示,从而在精度损失与压缩效率之间取得最优平衡。以下从技术原理、实现方法和典型案例三个维度展开分析:一、技术原理与核心机制1.混合精度的理论基础精度-冗余权衡:大模型中不
- 压缩感知解析
DuHz
算法机器学习信号处理开发语言人工智能数学建模线性代数
压缩感知解析理论基础与数学框架压缩感知理论由EmmanuelCandès、TerenceTao、DavidDonoho等数学家在2004年前后建立,该理论证明:对于在某种变换域中具有稀疏性的信号,可以通过远少于奈奎斯特采样率的随机测量实现完美重构。压缩感知的数学框架基本数学模型压缩感知的核心数学模型为:y=Φx+n\mathbf{y}=\boldsymbol{\Phi}\mathbf{x}+\ma
- 华为鸿蒙模型轻量化进阶:从「能用」到「好用」的生态进化之路
harmonyos
哈喽!我是小L,那个在鸿蒙端侧「用模型压缩技术撬动千亿设备」的女程序员~你知道吗?当轻量化模型遇见鸿蒙分布式能力,能让智能手表的健康监测精度提升20%,同时功耗降低30%!今天就来聊聊模型轻量化在鸿蒙生态中的「终极形态」——全场景协同、自进化模型、隐私增强,看看未来的端侧AI如何「聪明又贴心」!一、全场景协同:让模型「随需而变」(一)跨设备模型调度架构graphTDA[用户请求]-->B{设备类型
- 第39节:模型压缩技术:剪枝与量化
点我头像干啥
pytorch人工智能python
引言在人工智能和深度学习领域,模型规模的快速增长已成为一个显著趋势。从早期的简单神经网络到如今拥有数十亿参数的巨型模型(如GPT-3、BERT等),模型的复杂性不断提高,带来了更强大的性能,但同时也带来了计算资源消耗大、存储需求高、推理延迟长等一系列挑战。这些挑战严重限制了深度学习模型在资源受限环境(如移动设备、嵌入式系统和边缘计算场景)中的部署和应用。为了解决这些问题,模型压缩技术应运而生。模型
- 工业大模型全景解析:53个大模型案例深度探索
大模型猫叔
人工智能开源机器人数据库职场和发展chatgpt
工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。前排提示,文末有大模型AGI-CSDN独家资料包哦!根据沙丘智库发布的《[2024年中国工业大模型应用跟踪报告]》,工业大模型是指在通用基础大模型(例如文心一言、通义千问等)的基础上,结合行业&场景数据进行预训练和微调,并进行模型压缩(裁剪、蒸
- 【粉丝福利社】大模型轻量化:模型压缩与训练加速
愚公搬代码
愚公系列-送书福利社人工智能AGIAIAgentManus智能体
【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主!江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"挖山不止"的毅力为开发者们搬开知识道路上的重重阻碍!【行业认证·权威头衔】✔华为云天团核心成员:特约编辑/云享专家/开发者专家/产品云测专家✔开发者社区全满贯:CSDN博客&商业化双料
- 【大模型面试每日一题】Day 25:如何通过模型压缩技术将千亿模型部署到边缘设备?
是麟渊
LLMInterviewDaily面试每日一题面试深度学习人工智能职场和发展自然语言处理语言模型神经网络
【大模型面试每日一题】Day25:如何通过模型压缩技术将千亿模型部署到边缘设备?题目重现面试官:我们需要将千亿参数大模型(如PaLM)部署到边缘设备(如JetsonAGXOrin),请设计一个包含量化、蒸馏等压缩技术的部署方案,并说明需要重点考虑的硬件约束、延迟限制、精度损失等关键因素。大模型模型压缩量化蒸馏结构优化内存约束精度损失计算效率核心考点模型压缩技术理解能力:能否系统性分析量化、蒸馏等技
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- 深度剖析Transformer架构:从原理到实战的全面指南
AI_DL_CODE
人工智能基础:AI基石人工智能应用transformer深度学习人工智能神经网络自注意力机制多模态学习稀疏注意力
摘要:本文系统阐述Transformer架构核心原理,深入剖析自注意力机制、多头注意力、位置编码等关键组件的运行逻辑与数学表达。结合自然语言处理、计算机视觉等多领域应用场景,提供BERT文本分类、ViT图像分类等完整代码实现及详细解析,通过可视化注意力机制增强理解。探讨稀疏注意力、模型压缩等高效化路径,以及多模态融合、硬件适配等前沿趋势。研究表明,Transformer凭借并行计算与强大表征能力革
- AI模型压缩与优化:如何在资源受限设备上运行大模型?
北辰alk
AI人工智能
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/north文章目录一、引言:边缘计算的挑战与机遇二、模型压缩技术全景图2.1主要压缩技术分类2.2技术选型决策树三、核心优化技术详解3.1参数量化(Quantization)3.1.1基本原理3.1.2TensorFlowLite量化实践3.2模型修剪
- MATLAB2025新功能
MATLAB卡尔曼
matlab
截至2023年9月,MATLAB官方尚未公布2025版本的具体更新内容。根据历史更新规律和技术发展趋势,未来版本可能会在以下方面进行优化:AI与深度学习增强可能新增自动化模型压缩工具强化生成式AI模型支持改进的ONNX格式转换接口性能提升矩阵运算加速:C=αAB+βC\mathbf{C}=\alpha\mathbf{A}\mathbf{B}+\beta\mathbf{C}C=αAB+βC并行计算优
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>