运行tensorflow后,程序报错:
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value beta1_power
[[Node: beta1_power/read = Identity[T=DT_FLOAT, _class=["loc:@Adam/Assign_1"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](beta1_power)]
程序如下,已经修改正确:
#机器学习框架搭建
import tensorflow as tf
W = tf.Variable(tf.zeros([2, 1]), name="weights")
b = tf.Variable(0., name="bias")
def inference(X):
return tf.matmul(X, W) + b
def loss(X, Y):
Y_predicted = inference(X)
return tf.reduce_sum(tf.squared_difference(Y, Y_predicted))
def inputs():
weight_age = [[84, 46], [73, 20], [65, 52], [70, 30], [76, 57], [69, 25], [63, 28], [72, 36], [79, 57], [75, 44],
[27, 24], [89, 31], [65, 52], [57, 23], [59, 60], [69, 48], [60, 34], [79, 51], [75, 50], [82, 34],
[59, 46], [67, 23], [85, 37], [55, 40], [63, 30]]
blood_fat_content = [354, 190, 405, 263, 451, 302, 288, 385, 402, 365, 209, 290, 346, 254, 395, 434, 220, 374, 308,
220, 311, 181, 274, 303, 244]
return tf.to_float(weight_age), tf.to_float(blood_fat_content)
def train(total_loss):
learning_rate = 0.0000001
#return tf.train.AdamOptimizer(0.0000001).minimize(total_loss)
return tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)
def evaluate(sess, X, Y):
print(sess.run(inference([[80., 25.]])))
print(sess.run(inference([[65., 25.]])))
with tf.Session() as sess:
X, Y = inputs()
#init = tf.global_variables_initializer()
total_loss = loss(X, Y)
train_op = train(total_loss)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
init = tf.global_variables_initializer()#初始化所在的位置至关重要,以本程序为例,使用adam优化器时,会主动创建变量。
#因此,如果这时的初始化位置在创建adam优化器之前,则adam中包含的变量会未初始化,然后报错。本行初始化时,可以看到Adam
#已经声明,古不会出错
sess.run(init)
training_steps = 10000
saver = tf.train.Saver() #模型保存和恢复,当把改行放入for循环中以后,会发现程序执行速度明显变慢
for step in range(training_steps):
#saver = tf.train.Saver()
sess.run(train_op)
if step % 10 == 0:
print("loss", sess.run(total_loss))
if step % 1000 == 0:
saver.save(sess, r"E:\tf_project\练习\model_save_dir\my-model", global_step=step)
evaluate(sess, X, Y)
saver.save(sess, r"E:\tf_project\练习\model_save_dir\my-model", global_step=training_steps)
coord.request_stop()
coord.join(threads)
sess.close()