自上而下输入边来建立树的孩子兄弟链表存储结构(例如#A,AB,AC,BD,##),求树的深度。要求:在一个程序里完成。

1、 自上而下输入边来建立树的孩子兄弟链表存储结构(例如#A,AB,AC,BD,##),求树的深度。

要求:在一个程序里完成。


#include 
#include 
// 函数结果状态代码
#define TRUE		1
#define FALSE		0
#define OK			1
#define ERROR		0
#define	INFEASIBLE	-1
#define OVERFLOW	-2
typedef int Status;

typedef char TElemType;		// 元素数据类型
#define MAX_TREE_SIZE 100	// 二叉树的最大结点数
typedef TElemType  SqBiTree[MAX_TREE_SIZE];	// 0号单元存储根结点
SqBiTree  bt;

#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10
#define MAXLEN 100

//树的二叉链表储存结构
typedef struct CSNode	//结点结构
{
	TElemType Data;
	struct CSNode *firstchild, *nextsibling;
}CSNode, *CSTree;

//队列存储结构及操作
typedef struct QNode
{
	CSTree Data;
	struct QNode *next;
}QNode, *QueuePtr;

typedef struct
{
	QueuePtr front;
	QueuePtr rear;
}LinkQueue;

//构造空队列
Status InitQueue(LinkQueue &Q)
{
	Q.front = Q.rear = (QueuePtr)malloc(sizeof(QNode));
	if (!Q.front)
		exit(OVERFLOW);
	Q.front->next = NULL;
	return OK;
}

//销毁队列
Status DestoryQueue(LinkQueue &Q)
{
	while (Q.front)
	{
		Q.rear = Q.front->next;
		free(Q.front);
		Q.front = Q.rear;
	}
	return OK;
}

//入队
Status EnQueue(LinkQueue &Q, CSTree e)
{
	QueuePtr p;
	p = (QueuePtr)malloc(sizeof(QNode));
	if (!p)
		exit(OVERFLOW);
	p->Data = e;
	p->next = NULL;
	Q.rear->next = p;
	Q.rear = p;
	return OK;
}

//出队
Status DeQueue(LinkQueue &Q, CSTree &e)
{
	QueuePtr p;
	if (Q.front == Q.rear)
		return ERROR;
	p = Q.front->next;
	e = p->Data;
	Q.front->next = p->next;
	if (Q.rear == p)
		Q.rear = Q.front;
	free(p);
	return OK;
}

//读队头
Status GetHead(LinkQueue &Q, CSTree &e)
{
	QueuePtr p;
	if (Q.front == Q.rear)
		return ERROR;
	p = Q.front->next;
	e = p->Data;
	return OK;
}

//建立树的孩子——兄弟链表节点
CSTree GetTreeNode(TElemType e)
{
	CSTree p;
	p = (CSTree)malloc(sizeof(CSNode));
	if (!p)
		exit(OVERFLOW);
	p->Data = e;
	p->firstchild = NULL;
	p->nextsibling = NULL;
	return p;
}

//建立树的孩子——兄弟链表
Status CreateTree(CSTree &T)
{
	char first = ' ', second = ' ';
	int result = 0;
	LinkQueue Q;
	CSTree p, s, r;
	InitQueue(Q);
	T = NULL;
	for (scanf("%c%c", &first, &second);
		second != '#'; result = scanf("%c%c", &first, &second))
	{
		p = GetTreeNode(second);
		EnQueue(Q, p);
		if (first == '#')
			T = p;
		else
		{
			GetHead(Q, s);
			while (s->Data != first)
			{
				DeQueue(Q, s);
				GetHead(Q, s);
			}
			if (!(s->firstchild))
			{
				s->firstchild = p;
				r = p;
			}
			else
			{
				r->nextsibling = p;
				r = p;
			}
		}
	}
	return OK;
}

//求树的深度
int TreeDepth(CSTree T)
{
	int h1, h2;
	if (!T)
		return 0;
	else
	{
		h1 = TreeDepth(T->firstchild);
		h2 = TreeDepth(T->nextsibling);
		return(((h1 + 1) > h2) ? (h1 + 1) : h2);
	}
}

int main(int argc, char const *argv[])
{
	CSTree T;

	printf("\n树\n");
	printf("自上而下自左至右输入树的各条边(如 #AABACADCECFEG##):\n");
	CreateTree(T);

	printf("树的深度是:%d\n", TreeDepth(T));
	system("pause");
	return 0;
}

你可能感兴趣的:(数据结构,数据结构,树)