Python Numpy 快速入门

Python

Python是一种高级的、动态类型的多范型编程语言。Python代码通常被认为是伪代码,因为它允许您在非常可读的几行代码中表达非常强大的思想。作为一个例子,下面是Python中经典的快速排序算法的实现:

def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))
# Prints "[1, 1, 2, 3, 6, 8, 10]"
Python版本

目前有两种不同的Python版本,分别是2.7和3.5。Python 3.0引入了许多对语言不兼容的更改,因此为2.7编写的代码可能不能在3.5下工作。
您可以通过运行Python-version来检查命令行中的Python版本。

基本数据类型

与大多数语言一样,Python有许多基本类型,包括整数、浮点数、布尔值和字符串。这些数据类型的使用方式与其他编程语言很相似。
数字:整数和浮点数可以从其他语言中得到:

x = 3
print(type(x)) # Prints ""
print(x)       # Prints "3"
print(x + 1)   # Addition; prints "4"
print(x - 1)   # Subtraction; prints "2"
print(x * 2)   # Multiplication; prints "6"
print(x ** 2)  # Exponentiation; prints "9"
x += 1
print(x)  # Prints "4"
x *= 2
print(x)  # Prints "8"
y = 2.5
print(type(y)) # Prints ""
print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"

注意,与许多语言不同的是,Python不支持增量(x++)或递减(x--)操作符。
Python也有用于复数的内置类型;您可以在文档中找到所有的细节。

布尔值:Python实现了布尔逻辑的所有常用操作符,但使用的是英语单词而不是符号(&&等等):

t = True
f = False
print(type(t)) # Prints ""
print(t and f) # Logical AND; prints "False"
print(t or f)  # Logical OR; prints "True"
print(not t)   # Logical NOT; prints "False"
print(t != f)  # Logical XOR; prints "True"

字符串:Python对字符串有很大的支持:

hello = 'hello'    # String literals can use single quotes
world = "world"    # or double quotes; it does not matter.
print(hello)       # Prints "hello"
print(len(hello))  # String length; prints "5"
hw = hello + ' ' + world  # String concatenation
print(hw)  # prints "hello world"
hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting
print(hw12)  # prints "hello world 12"

String对象有很多有用的方法;例如:

s = "hello"
print(s.capitalize())  # Capitalize a string; prints "Hello"
print(s.upper())       # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7))      # Right-justify a string, padding with spaces; prints "  hello"
print(s.center(7))     # Center a string, padding with spaces; prints " hello "
print(s.replace('l', '(ell)'))  # Replace all instances of one substring with another;
                                # prints "he(ell)(ell)o"
print('  world '.strip())  # Strip leading and trailing whitespace; prints "world"

您可以在文档中找到所有字符串方法

容器

Python包括几个内置的容器类型:列表、字典、集合和元组。

列表
列表是Python的一个数组,但是可以调整,并且可以包含不同类型的元素:

xs = [3, 1, 2]    # Create a list
print(xs, xs[2])  # Prints "[3, 1, 2] 2"
print(xs[-1])     # Negative indices count from the end of the list; prints "2"
xs[2] = 'foo'     # Lists can contain elements of different types
print(xs)         # Prints "[3, 1, 'foo']"
xs.append('bar')  # Add a new element to the end of the list
print(xs)         # Prints "[3, 1, 'foo', 'bar']"
x = xs.pop()      # Remove and return the last element of the list
print(x, xs)      # Prints "bar [3, 1, 'foo']"

切片(Slicing):除了每次访问列表元素一次,Python还提供了访问子列表的简明语法;这就是所谓的切片:

nums = list(range(5))     # range is a built-in function that creates a list of integers
print(nums)               # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4])          # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])           # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])           # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])            # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"
print(nums[:-1])          # Slice indices can be negative; prints "[0, 1, 2, 3]"
nums[2:4] = [8, 9]        # Assign a new sublist to a slice
print(nums)               # Prints "[0, 1, 8, 9, 4]"

循环:您可以对列表的元素进行循环/遍历:

animals = ['cat', 'dog', 'monkey']
for animal in animals:
    print(animal)
# Prints "cat", "dog", "monkey", each on its own line.

如果您想要访问循环体中的每个元素的索引,请使用内置的枚举(enumerate)函数:

animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):
    print('#%d: %s' % (idx + 1, animal))
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

列表理解:在编程时,我们经常需要将一种类型的数据转换为另一种类型。作为一个简单的例子,考虑下面的代码计算平方数:

nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:
    squares.append(x ** 2)
print(squares)   # Prints [0, 1, 4, 9, 16]

您可以使用列表理解来简化这段代码:

nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares)   # Prints [0, 1, 4, 9, 16]

列表理解也可以包含条件:

nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)  # Prints "[0, 4, 16]"

字典
字典存储(键、值)对,类似于Java中的映射或Javascript中的对象。你可以这样使用它:

d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
print(d['cat'])       # Get an entry from a dictionary; prints "cute"
print('cat' in d)     # Check if a dictionary has a given key; prints "True"
d['fish'] = 'wet'     # Set an entry in a dictionary
print(d['fish'])      # Prints "wet"
# print(d['monkey'])  # KeyError: 'monkey' not a key of d
print(d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A'))    # Get an element with a default; prints "wet"
del d['fish']         # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

循环:在字典中对键进行迭代是很容易的:

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:
    legs = d[animal]
    print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

如果您想要访问键值(keys)及其对应的值,请使用items方法:

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():
    print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

字典的理解:这些类似于列表的理解,但是允许你轻松地构造字典。例如:

nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)  # Prints "{0: 0, 2: 4, 4: 16}"

集合
集合是不同元素的无序集合。作为一个简单的例子,请考虑以下内容:

animals = {'cat', 'dog'}
print('cat' in animals)   # Check if an element is in a set; prints "True"
print('fish' in animals)  # prints "False"
animals.add('fish')       # Add an element to a set
print('fish' in animals)  # Prints "True"
print(len(animals))       # Number of elements in a set; prints "3"
animals.add('cat')        # Adding an element that is already in the set does nothing
print(len(animals))       # Prints "3"
animals.remove('cat')     # Remove an element from a set
print(len(animals))       # Prints "2"

循环:在一个集合上的迭代与遍历列表的语法相同;然而,由于集合是无序的,所以您不能对您访问集合元素的顺序作出假设:

animals = {'cat', 'dog', 'fish'}
for idx, animal in enumerate(animals):
    print('#%d: %s' % (idx + 1, animal))
# Prints "#1: fish", "#2: dog", "#3: cat"

集合:像列表和字典一样,我们可以用集合的理解来轻松地构建集合:

from math import sqrt
nums = {int(sqrt(x)) for x in range(30)}
print(nums)  # Prints "{0, 1, 2, 3, 4, 5}"

元组
tuple是一个(不可变的)有序的值列表。元组在许多方面与列表相似;最重要的区别之一是,元组可以用作字典中的键,也可以作为集合的元素,而列表则不能。这里有一个简单的例子:

d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
t = (5, 6)        # Create a tuple
print(type(t))    # Prints ""
print(d[t])       # Prints "5"
print(d[(1, 2)])  # Prints "1"

方法/函数
Python函数是使用def关键字定义的。例如:

def sign(x):
    if x > 0:
        return 'positive'
    elif x < 0:
        return 'negative'
    else:
        return 'zero'

for x in [-1, 0, 1]:
    print(sign(x))
# Prints "negative", "zero", "positive"

我们通常会定义一些函数来选择可选的关键字参数,比如:

def hello(name, loud=False):
    if loud:
        print('HELLO, %s!' % name.upper())
    else:
        print('Hello, %s' % name)

hello('Bob') # Prints "Hello, Bob"
hello('Fred', loud=True)  # Prints "HELLO, FRED!"


在Python中定义类的语法很简单:

class Greeter(object):

    # Constructor
    def __init__(self, name):
        self.name = name  # Create an instance variable

    # Instance method
    def greet(self, loud=False):
        if loud:
            print('HELLO, %s!' % self.name.upper())
        else:
            print('Hello, %s' % self.name)

g = Greeter('Fred')  # Construct an instance of the Greeter class
g.greet()            # Call an instance method; prints "Hello, Fred"
g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"

Numpy

Numpy是Python中科学计算的核心库。它提供了高性能多维数组对象和用于处理这些数组的工具。如果你已经熟悉了MATLAB,你可能会发现这个教程很有用,可以从Numpy开始。

数组
numpy数组是一个值网格,所有类型都是相同类型的,并且被一个非负整数的元组索引。维数是数组的秩;数组的形状是一个数组的数组,它在每个维度上给出数组的大小。
我们可以从嵌套的Python列表中初始化numpy数组,并使用方括号访问元素:

import numpy as np

a = np.array([1, 2, 3])   # Create a rank 1 array
print(type(a))            # Prints ""
print(a.shape)            # Prints "(3,)"
print(a[0], a[1], a[2])   # Prints "1 2 3"
a[0] = 5                  # Change an element of the array
print(a)                  # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
print(b.shape)                     # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"

Numpy还提供了许多用于创建数组的函数:

import numpy as np

a = np.zeros((2,2))   # Create an array of all zeros
print(a)              # Prints "[[ 0.  0.]
                      #          [ 0.  0.]]"

b = np.ones((1,2))    # Create an array of all ones
print(b)              # Prints "[[ 1.  1.]]"

c = np.full((2,2), 7)  # Create a constant array
print(c)               # Prints "[[ 7.  7.]
                       #          [ 7.  7.]]"

d = np.eye(2)         # Create a 2x2 identity matrix
print(d)              # Prints "[[ 1.  0.]
                      #          [ 0.  1.]]"

e = np.random.random((2,2))  # Create an array filled with random values
print(e)                     # Might print "[[ 0.91940167  0.08143941]
                             #               [ 0.68744134  0.87236687]]"

您可以在文档中阅读关于数组创建的其他方法。

数组索引
Numpy提供了几种索引数组的方法。
切片:类似于Python列表,可以将numpy数组切片。由于数组可能是多维的,所以您必须为数组的每个维度指定一个切片:

import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
#  [6 7]]
b = a[:2, 1:3]

# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print(a[0, 1])   # Prints "2"
b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])   # Prints "77"

您还可以将整型索引与片索引相混合。但是,这样做会产生比原始数组更低级的数组。注意,这与MATLAB处理数组切片的方式有很大的不同:

import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1 = a[1, :]    # Rank 1 view of the second row of a
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"

# We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)"
print(col_r2, col_r2.shape)  # Prints "[[ 2]
                             #          [ 6]
                             #          [10]] (3, 1)"

整数数组索引:当您使用分段索引到numpy数组时,生成的数组视图将始终是原始数组的子数组。相反,整数数组索引允许使用来自另一个数组的数据构造任意的数组。这是一个例子:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])  # Prints "[1 4 5]"

# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]"

# When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])  # Prints "[2 2]"

# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))  # Prints "[2 2]"

整数数组索引的一个有用的技巧是在矩阵的每一行中选择或变化(mutating )一个元素:

import numpy as np

# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)  # prints "array([[ 1,  2,  3],
          #                [ 4,  5,  6],
          #                [ 7,  8,  9],
          #                [10, 11, 12]])"

# Create an array of indices
b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"

# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10

print(a)  # prints "array([[11,  2,  3],
          #                [ 4,  5, 16],
          #                [17,  8,  9],
          #                [10, 21, 12]])

布尔数组索引:布尔数组索引可以让你挑选出一个数组的任意元素。通常,这种类型的索引用于选择满足某些条件的数组的元素。这是一个例子:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;
                     # this returns a numpy array of Booleans of the same
                     # shape as a, where each slot of bool_idx tells
                     # whether that element of a is > 2.

print(bool_idx)      # Prints "[[False False]
                     #          [ True  True]
                     #          [ True  True]]"

# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])  # Prints "[3 4 5 6]"

# We can do all of the above in a single concise statement:
print(a[a > 2])     # Prints "[3 4 5 6]"

为了简洁,我省略了很多关于numpy数组索引的细节;如果你想知道更多,你应该阅读文档。

数据类型
每个numpy数组都是相同类型的元素的网格。Numpy提供了一组大型的数字数据类型,您可以使用它们来构造数组。Numpy试图在创建数组时猜测数据类型,但构造数组的功能通常也包括一个可选的参数,以显式地指定数据类型。这是一个例子:

import numpy as np

x = np.array([1, 2])   # Let numpy choose the datatype
print(x.dtype)         # Prints "int64"

x = np.array([1.0, 2.0])   # Let numpy choose the datatype
print(x.dtype)             # Prints "float64"

x = np.array([1, 2], dtype=np.int64)   # Force a particular datatype
print(x.dtype)                         # Prints "int64"

您可以在文档中阅读所有关于numpy数据类型的信息。
矩阵运算
基本的数学函数在数组上操作元素,并且可以作为操作符重载和在numpy模块中的函数:

import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum; both produce the array
# [[ 6.0  8.0]
#  [10.0 12.0]]
print(x + y)
print(np.add(x, y))

# Elementwise difference; both produce the array
# [[-4.0 -4.0]
#  [-4.0 -4.0]]
print(x - y)
print(np.subtract(x, y))

# Elementwise product; both produce the array
# [[ 5.0 12.0]
#  [21.0 32.0]]
print(x * y)
print(np.multiply(x, y))

# Elementwise division; both produce the array
# [[ 0.2         0.33333333]
#  [ 0.42857143  0.5       ]]
print(x / y)
print(np.divide(x, y))

# Elementwise square root; produces the array
# [[ 1.          1.41421356]
#  [ 1.73205081  2.        ]]
print(np.sqrt(x))

注意,与MATLAB不同的是,*是元素的乘法,而不是矩阵乘法。我们用dot函数来计算向量的内积,将一个向量乘以一个矩阵,再乘以矩阵。dot既可以作为numpy模块中的函数,也可以作为数组对象的实例方法:

import numpy as np

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))

# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))

# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
#  [43 50]]
print(x.dot(y))
print(np.dot(x, y))

Numpy为在数组中执行计算提供了许多有用的函数;其中一个最有用的就是:sum

import numpy as np

x = np.array([[1,2],[3,4]])

print(np.sum(x))  # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"

您可以在文档中找到numpy提供的数学函数的完整列表。

除了使用数组计算数学函数外,我们还经常需要对数组中的数据进行重构或处理。这类操作最简单的例子就是转置矩阵;要转置矩阵,只需使用数组对象的T属性:

import numpy as np

x = np.array([[1,2], [3,4]])
print(x)    # Prints "[[1 2]
            #          [3 4]]"
print(x.T)  # Prints "[[1 3]
            #          [2 4]]"

# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print(v)    # Prints "[1 2 3]"
print(v.T)  # Prints "[1 2 3]"

Numpy为操纵数组提供了更多的函数;您可以在文档中看到完整的列表。

广播
广播是一种强大的机制,它允许numpy在执行算术运算时使用不同形状的数组。通常我们有一个更小的数组和一个更大的数组,我们希望使用较小的数组多次来对更大的数组执行一些操作。
例如,假设我们想要在矩阵的每一行中添加一个常数向量。我们可以这样做:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x)   # Create an empty matrix with the same shape as x

# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):
    y[i, :] = x[i, :] + v

# Now y is the following
# [[ 2  2  4]
#  [ 5  5  7]
#  [ 8  8 10]
#  [11 11 13]]
print(y)

然而,当矩阵x非常大时,在Python中计算一个显式循环可能会比较慢。请注意,将向量v添加到矩阵x的每一行中,就相当于将v垂直地堆叠起来,从而形成一个矩阵vv,然后执行x和vv的元素求和。我们可以这样来实现这个方法:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1))   # Stack 4 copies of v on top of each other
print(vv)                 # Prints "[[1 0 1]
                          #          [1 0 1]
                          #          [1 0 1]
                          #          [1 0 1]]"
y = x + vv  # Add x and vv elementwise
print(y)  # Prints "[[ 2  2  4
          #          [ 5  5  7]
          #          [ 8  8 10]
          #          [11 11 13]]"

:Numpy广播允许我们在不实际创建v的多个拷贝的情况下进行计算,使用广播:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v  # Add v to each row of x using broadcasting
print(y)  # Prints "[[ 2  2  4]
          #          [ 5  5  7]
          #          [ 8  8 10]
          #          [11 11 13]]"

代码y=x+v,尽管x有形状(4,3),v有形状(3,)因为广播;这行代码就像v实际上有形状(4,3),每一行都是v的拷贝,并且求和是在元素上进行的。

广播两个数组遵循以下规则:
1.如果数组没有相同的秩,则在两个形状都有相同长度的情况下,将较低级别数组的形状提前结束。
2.如果两个数组在维度中具有相同的大小,或者在维度中有一个数组的大小为1,那么这两个数组在维度上是兼容的。
3.如果在所有维度上兼容,阵列就可以进行广播。
4.在广播之后,每个阵列的表现就好像它的形状等于两个输入阵列的元素最基本的形状。
5.在任何维度中,一个数组的大小是1而另一个数组的大小大于1。

如果这种解释没有意义,请尝试从文档或解释中阅读解释。
支持广播的功能被称为通用功能。您可以在文档中找到所有通用函数的列表。

以下是一些广播的应用:

import numpy as np

# Compute outer product of vectors
v = np.array([1,2,3])  # v has shape (3,)
w = np.array([4,5])    # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4  5]
#  [ 8 10]
#  [12 15]]
print(np.reshape(v, (3, 1)) * w)

# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
#  [5 7 9]]
print(x + v)

# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5  6  7]
#  [ 9 10 11]]
print((x.T + w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))

# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2  4  6]
#  [ 8 10 12]]
print(x * 2)

广播通常会使您的代码更加简洁和快速,因此您应该尽可能地使用它。

Numpy文档
这个简短的概述涉及了许多您需要了解的关于numpy的重要内容,但是还远远不够。查看numpy引用,了解更多关于numpy的内容。

SciPy
Numpy提供了一个高性能多维数组和基本工具来计算和操作这些数组。SciPy在此基础上构建,并提供了大量的函数,这些函数可以在numpy数组中运行,并且对于不同类型的科学和工程应用程序非常有用。
熟悉SciPy的最好方法是浏览文档。

图像操作
SciPy提供了一些基本功能来处理图像。例如,它具有从磁盘读取图像到numpy数组的功能,将numpy数组写入磁盘作为图像,以及调整图像大小。下面是一个展示这些功能的简单示例:

from scipy.misc import imread, imsave, imresize

# Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print(img.dtype, img.shape)  # Prints "uint8 (400, 248, 3)"

# We can tint the image by scaling each of the color channels
# by a different scalar constant. The image has shape (400, 248, 3);
# we multiply it by the array [1, 0.95, 0.9] of shape (3,);
# numpy broadcasting means that this leaves the red channel unchanged,
# and multiplies the green and blue channels by 0.95 and 0.9
# respectively.
img_tinted = img * [1, 0.95, 0.9]

# Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300))

# Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)
Python Numpy 快速入门_第1张图片
图片.png
Python Numpy 快速入门_第2张图片
图片.png

点之间的距离
SciPy定义了一些有用的函数,用于计算两点之间的距离。
scipy.spatial.distance的函数。p主义者计算给定集合中所有的点之间的距离:

import numpy as np
from scipy.spatial.distance import pdist, squareform

# Create the following array where each row is a point in 2D space:
# [[0 1]
#  [1 0]
#  [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x)

# Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0.          1.41421356  2.23606798]
#  [ 1.41421356  0.          1.        ]
#  [ 2.23606798  1.          0.        ]]
d = squareform(pdist(x, 'euclidean'))
print(d)

你可能感兴趣的:(Python Numpy 快速入门)