- 密码学 网络安全 科普 网络安全密码技术
黑客-秋凌
密码学web安全安全
网络加密包括密码技术和网络加密方法两个方面。一、密码技术密码技术一般分为常规密码和公钥密码。常规密码是指收信方和发信方使用相同的密钥,即加密密钥和解密密钥是相同或等价的。比较著名的常规密码算法有DES及其各种变形、IDEA、FEAL、Skipjack、RC4、RC5等。在众多的常规密码中影响最大的是DES密码。常规密码的优点是有很强的保密强度,且能经受住时间的检验和攻击,但其密钥必须通过安全的途径
- DeepSeek开源:FlashMLA深度解析:Hopper架构上的大模型推理革命
花生糖@
AIGC学习资料库AI·未来DeepSeek实用集开源架构FlashMLADeepSeek技术AIAIGC
2025年2月24日,DeepSeek以「开源周」首日发布的FlashMLA技术,重新定义了Hopper架构GPU在AI推理领域的性能极限。这款专为NVIDIAH800/H100系列优化的MLA(Multi-headLatentAttention)解码内核,通过突破性算法设计与硬件协同优化,在可变长度序列处理场景中实现了3000GB/s内存带宽与580TFLOPS计算吞吐的里程碑式突破。其开源策略
- 大模型生成人物关系思维导图的实战教程
herosunly
大模型生成人物关系生成思维导图实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了大模型生成人物关系思维导图的实战教程,希望对使用大语言模型的同学们有所帮
- Python使用pycryptodome库来进行AES加密解密
飞起来fly呀
Pythonpython
在现代通信和数据存储中,加密技术是保障数据安全的核心手段。AES(AdvancedEncryptionStandard)是一种对称加密算法,广泛应用于各种信息安全领域。Python提供了丰富的加密库,其中PyCryptodome是一个功能强大且常用的库,它支持多种加密算法和模式。以下指南将详细介绍如何在Python中使用PyCryptodome库进行AES加密和解密。一、安装PyCryptodom
- 轻松掌握:Milvus向量数据库部署与RAG使用技巧
威研威语
人工智能数据库milvus数据库人工智能RAG
Milvus简介Milvus是一款开源的向量数据库,由Zilliz开发并维护,适合用于机器学习和人工智能领域。是一款专为处理向量查询而设计的数据库,Milvus能够对万亿级向量进行索引。Milvus官网:https://milvus.io/Milvus中文文档:https://www.milvus-io.com/Milvus部署环境准备Linux操作系统Docker19.03或更高版本Docker
- 《算法笔记》8.1小节——搜索专题->深度优先搜索(DFS)问题 C: 【递归入门】组合+判断素数
圣保罗的大教堂
《算法笔记》算法
题目描述已知n个整数b1,b2,…,bn以及一个整数k(k<n)。从n个整数中任选k个整数相加,可分别得到一系列的和。例如当n=4,k=3,4个整数分别为3,7,12,19时,可得全部的组合与它们的和为:3+7+12=223+7+19=297+12+19=383+12+19=34。现在,要求你计算出和为素数共有多少种。例如上例,只有一种的和为素数:3+7+19=29。输入第一行两个整数:n,k(1
- 征程 6 基于 Linux 和 Node-Locked License 配置 DSP 开发环境
自动驾驶算法
说明:该文档以征程6上使用的Q8DSP安装为例,同样的步骤在征程5上使用方法类似只是征程6使用的DSP为VP61.获取所需文件在配置征程6的DSP开发环境前,您需要获取以下文件:标准工具链发布包部分(请联系地平线项目对接人获取)OpenExplorer算法工具链Docker镜像OpenExplorer算法工具链交付包(OE包中提供了大量示例,包括DSP示例)OpenExplorer算法工具链中文文
- [论文解读] 多机器人系统动态任务分配综述
「已注销」
算法
https://www.emerald.com/insight/content/doi/10.1108/IR-04-2020-0073/full/html多机器人/多智能体动态环境任务分配决策动态任务调度策略该文章主要是想对目前stateoftheart多机器人动态任务调度策略做一个全面的评价,注意定语挺多的,里面的方法也较多为近几年的智能调度那些算法。衡量方法主要考虑到了应用场景、限制、目标方程
- 【动态规划】任务分配问题
精神小猿
动态规划
题目来自贵大OJ题目描述:给定n个零件需要的加工时间,分配到两台机床上加工,使得两台机床完成加工的时间尽可能同步。设计一个穷举搜索算法求解该问题。例如,有3个零件,加工时间分别为2、5和3,那么把加工时间为2、3的两个零件分配到一台机床上加工,把加工时间为5的零件分配到另一台机床上加工,两台机床能同时完工。输入描述:每组数据的第一行是一个整数n(1#includeusingnamespacestd
- PCL 点云OBB包围盒(二)
大鱼BIGFISH
点云进阶C++PCL点云OBB包围盒
文章目录一、简介二、实现步骤二、实现代码三、实现效果参考资料一、简介包围盒是一种求解离散点集最优包围空间的算法,基本思想是用体积稍大且特性简单的几何体(称为包围盒)来近似地代替复杂的几何对象。(来源于百度)常用的求解包围盒的算法主要有AABB和OOB算法,但AABB算法容易受到物体朝向的影响,产生较大的空隙,因此本文将以OOB算法思想实现最小包围盒的求取。包围盒的应用有很多,如机械上的碰撞测试、物
- MATLAB 操作指南(结尾附实操案例)
vvvae1234
信息可视化
一、MATLAB简介MATLAB(矩阵实验室)是一个高级技术计算语言和交互环境,它主要用于数值计算、数据分析、算法开发和可视化。MATLAB的核心功能是矩阵运算,它能够处理向量和矩阵为中心的数学问题,方便用户进行算法的开发和数据可视化。主要特点高效的数值计算:MATLAB内置了许多用于数学和工程计算的函数,用户可以轻松地进行数值运算。可视化功能:MATLAB提供了丰富的工具,用于生成各种类型的图形
- C++枚举算法详解
卫青~护驾!
算法数据结构c++青少年编程枚举算法
一、枚举算法核心思想枚举算法是一种通过遍历所有可能情况来解决问题的暴力搜索方法,其核心特点是:全面性:不遗漏任何可能性简单性:逻辑直接易实现低效性:时间复杂度通常较高(O(n^k))适用场景:问题规模有限且可穷举的情况(如数值范围小、维度低)二、经典案例:福尔摩斯密码破解问题描述ABCDE×?=EDCBA其中A,E,?∈[1,9],B,C,D∈[0,9]所有字符互不相同算法实现(6层嵌套循环)fo
- 解读Layout Method of Met Mast Based on Macro Zoning and Micro Quantitative Siting in a Wind Farm
赵孝正
风资源与微观选址paper
目录1.风电场气象塔布局方法流程图(简略)内容细化2.风电场气象塔布局方法详细流程图(详细)核心算法和公式详解2.2解读流程(深入浅出)第一阶段:把大风电场分成几个小区域1.看看风在哪里吹得不一样️2.看看风机的位置分布️3.测量风机之间有多"像"4.用智能方法分区第二阶段:在每个区域内找到最好的位置放测量杆5.画格子找可能的位置6.用电脑模拟风的吹动7.筛选出好位置8.找出最最好的位置9.检验我
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- 算力网络技术创新驱动生态协同发展
智能计算研究中心
其他
内容概要算力网络作为数字经济发展的核心基础设施,正经历从单一性能提升向体系化技术协同的范式转变。当前技术创新主要聚焦三大维度:在架构层面,通过异构计算、量子计算与神经形态计算的融合,突破传统芯片制程限制;在调度层面,依托分布式计算与流批处理技术,实现跨边缘节点、工业互联网平台与超算中心的资源动态编排;在生态层面,围绕能效管理、安全标准与算法优化构建全链条能力,支撑金融风险评估、基因测序等高复杂度场
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- python实现KNN算法的手写数字识别:深入解析与完整项目流程
快撑死的鱼
Python算法精解算法
随着人工智能和机器学习的快速发展,图像识别技术在多个领域得到广泛应用。而手写数字识别作为图像识别的典型场景之一,已经成为研究者和开发者学习、应用机器学习算法的经典项目。本文将深入解析如何使用Python编程语言,结合KNN(K-最近邻)算法实现手写数字识别系统。文章不仅介绍了算法的核心原理,还从用户交互、图像处理、数据预处理等多个角度对整个项目进行了全方位的讲解。读者通过本文,可以全面掌握手写数字
- 云原生周刊:基于 KubeSphere LuBan 架构打造DeepSeek 插件
云计算
开源项目推荐KubeAIKubeAI是一个K8s上的AI推理操作器,旨在简化在生产环境中部署和管理大型语言模型(LLM)、向量嵌入和语音处理等机器学习模型。它提供与OpenAI兼容的API,支持在CPU和GPU上运行,并具备按需自动扩缩容的能力。KubeAI无需依赖Istio、Knative等其他系统,能够在几乎任何K8s集群中开箱即用。此外,它内置了模型代理,优化了键值缓存利用率,从而显著提升系
- OA协同办公软件为守护企业数据安全出的这套方案
oa协同软件即时通讯数据安全
在信息化时代,安全性是每个企业都绕不开的话题。企业酷信通过多重安全防护,让你在处理日常业务时无需为信息安全担忧。这里没有复杂的技术术语,只有实实在在的保护。登录安全:给每次登录加把“锁”企业酷信不仅提供传统的用户名和密码保护,还结合多因子认证和图形校验码,给每一次登录都加了几把“锁”。更重要的是,采用了先进的RSA和MD5算法加密,确保即使密码泄露,数据依然安全。业务安全:小细节,大保障日常的业务
- 前端笔试高频算法题及JavaScript实现
GISer_Jinger
前端算法javascript
以下是前端笔试常见的编程算法题及JavaScript代码现,结合最新面试题整理:一、数组/字符串处理两数之和找出数组中两数之和等于目标值的索引consttwoSum=(nums,target)=>{constmap=newMap();for(leti=0;i{letmap=newMap(),max=0,left=0;for(letright=0;right[...newSet(arr.flat(I
- 回溯算法入门(排列树问题 + 子集树问题)
啊龙阿
算法
#include#include//排列数问题/*如[1,2,3]的所有全排列结果为[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]总的排列数量为3!个*///法一:交换位置法voidswap(int*a,int*b){inttemp=*a;*a=*b;*b=temp;}voidprintArr(int*arr,intn){inti;for(i=0;i
- ⭐算法OJ⭐汉明距离【位操作】(C++ 实现)Total Hamming Distance
Vitalia
算法OJ算法c++开发语言
HammingDistance(汉明距离)是用于衡量两个等长字符串在相同位置上不同字符的个数的度量。它通常用于比较两个二进制字符串或编码序列的差异。定义给定两个长度相同的字符串AAA和BBB,它们的汉明距离D(A,B)D(A,B)D(A,B)是在相同位置上字符不同的位置的数量。示例二进制字符串:A=1011101B=1001001汉明距离D(A,B)=2D(A,B)=2D(A,B)=2(第3位和第
- 为什么程序员需要学习数字电路
Vitalia
理论基础程序人生学习开发语言数字电路
在编程的世界里,我们通常关注的是算法、数据结构、框架和设计模式等软件层面的知识。然而,数字电路作为计算机硬件的核心基础,对程序员来说同样重要。掌握数字电路不仅能帮助我们更好地理解计算机的底层原理,还能在实际开发中解决一些棘手的问题。本文将通过理论和实例,探讨程序员学习数字电路的必要性。1.数字电路与计算机的关系计算机的核心是中央处理器(CPU),而CPU的本质是由大量的数字电路组成的。数字电路通过
- 「QT」布局类 之 QHBoxLayout 水平布局类
何曾参静谧
「QT」QT5程序设计qt开发语言
✨博客主页何曾参静谧的博客(✅关注、点赞、⭐收藏、转发)文章专栏「QT」QT5程序设计全部专栏(专栏会有变化,以最新发布为准)「Win」Windows程序设计「IDE」集成开发环境「UG/NX」BlockUI集合「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」NX定制开发「Py」Python程序设计「Ma
- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 2025 年最值得收听的 AI 播客推荐!助你轻松掌握人工智能前沿动态!
真智AI
人工智能开发语言机器学习
如今,几乎每个人都被告知需要提升技能,而当前许多组织最看重的技能之一就是人工智能(AI)。学习AI相关技能通常涉及数学、统计学和机器学习,但除此之外,你还需要了解行业趋势、业内人士的观点以及各大公司的动态。然而,学习并不意味着时刻都要埋头苦读!有时候,你需要给大脑一个喘息的机会,同时依然能获取有价值的信息。而收听AI相关的播客,就是一个轻松高效的方式。以下是2025年你必须关注的AI播客!1.Th
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio