map端的join算法
1、原理阐述
适用于关联表中有小表的情形,可以将小表发送到所有的map节点,这样map节点就可以在本地对自己读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度
2、实例:
两表数据:
商品表数据
p0001,小米5,1000,2000
p0002,锤子T1,1000,3000
订单表数据
1001,20150710,p0001,2
1002,20150710,p0002,3
1002,20150710,p0003,3
编写map类
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
public class joinMap extends Mapper<LongWritable, Text, Text, Text> {
HashMap<String, String> map = new HashMap<String, String>();
String line = null;
/**
* 在map端的初始化方法中获取缓存文件,一次性加载到map中
*
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Path[] localCacheFiles = DistributedCache.getLocalCacheFiles(context.getConfiguration());
//获得所有的缓存文件
URI[] cacheFiles = DistributedCache.getCacheFiles(context.getConfiguration());
//获得文件系统
FileSystem fileSystem = FileSystem.get(cacheFiles[0], context.getConfiguration());
FSDataInputStream open = fileSystem.open(new Path(cacheFiles[0]));
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(open));
while ((line = bufferedReader.readLine()) != null) {
String[] split = line.split(",");
map.put(split[0], split[1] + "\t" + split[2] + "\t" + split[3]);
}
fileSystem.close();
IOUtils.closeStream(bufferedReader);
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//这里读的是这个map task所负责的那一个切片数据(在hdfs上)
String[] fields = value.toString().split(",");
String orderId = fields[0];
String date = fields[1];
String pdId = fields[2];
String amount = fields[3];
//获取map当中的商品详细信息
String productInfo = map.get(pdId);
context.write(new Text(orderId), new Text(date + "\t" + productInfo + "\t" + amount));
}
}
编写main
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.net.URI;
public class joinJobMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Configuration conf = super.getConf();
//注意,这里的缓存文件的添加,只能将缓存文件放到hdfs文件系统当中,放到本地加载不到
DistributedCache.addCacheFile(new URI("hdfs://node01:8020/cachefile/pdts.txt"), conf);
Job job = Job.getInstance(conf, joinJobMain.class.getSimpleName());
job.setJarByClass(joinJobMain.class);
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job, new Path("file:///d:\\map端join\\map_join_input"));
job.setMapperClass(joinMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:///d:\\map端join\\map_join_output"));
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
ToolRunner.run(configuration, new joinJobMain(), args);
}
}
reduce端join算法的缺陷:
缺点:这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜