pat1001

pat乙级+java语言

1001 害死人不偿命的(3n+1)猜想 (15 分)

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:
输出从 n 计算到 1 需要的步数。

输入样例:
3
输出样例:
5

代码

import java.util.*;
class Main{
    public static void main(String[] args){
        Scanner sc=new Scanner(System.in);
	    int num=0;//步数
	    int n=sc.nextInt();//正整数n
	    while(true){//循环
	        if(n%2==0){//如果为偶数
	            n=n/2;
	        } else if(n==1){//如果为1
	            break;
	        } else{//奇数
	            n=(n*3+1)/2;
	        }
	        num++;//统计步数
	    }
	    System.out.print(num);//打印
    }
}

你可能感兴趣的:(pat,pat,java)