- 具身智能的视觉-语言导航综述
24年2月来自曲阜师范、华东师大和哈工大的论文“Vision-LanguageNavigationwithEmbodiedIntelligence:ASurvey”。作为人工智能领域的长期愿景,具身智能的核心目标是提升智体与环境的感知、理解和交互能力。视觉-语言导航(VLN)作为实现具身智能的重要研究路径,致力于探索智体如何利用自然语言与人进行有效沟通,接收并理解指令,并最终依靠视觉信息实现精准导
- 什么是GPT-4T?
亿只小灿灿
人工智能GPT-4T
1.引言:GPT-4T概述GPT-4T是OpenAI开发的新一代多模态大型语言模型,在GPT-4的基础上增强了对表格数据、数学表达式和代码的处理能力。其核心创新在于Transformer架构的优化,使模型能够更高效地处理结构化数据与文本的融合任务。本文将深入探讨GPT-4T的技术原理、应用场景及代码实现。2.GPT-4T核心技术解析2.1多模态输入处理GPT-4T支持三种主要输入模态:自然语言文本
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- ChatGPT如何实现文字分类?精选案例和最佳实践
山城程序员
ChatGPT是一种预训练语言模型,通常用于生成自然语言文本。但是,在将其应用于分类任务时,它也可以表现出色。本文将介绍如何使用ChatGPT实现文本分类,并提供实践步骤和示例代码。1.数据准备在进行文本分类之前,您需要选择一个合适的数据集并对其进行清理和预处理。确保您的数据集包含带有标签的文本数据。例如,您可能拥有一些产品评论,并且需要将它们分类为积极或消极。以下是一个示例代码,演示如何加载数据
- 猫头虎推荐|用 AI 控制硬件设备的 MCP 工具:MCP2MQTT开源项目
猫头虎
猫头虎AI探索之路人工智能开源AIGCgptagipromptAI编程
猫头虎推荐|用AI控制硬件设备的MCP工具:MCP2MQTT开源项目MCP2MQTT是一款将物联网设备接入AI大模型的框架,它通过ModelContextProtocol(MCP)与MQTT协议的桥接,使得AI能够用自然语言实时感知并控制物理硬件。无论是机器人舵机控制,还是智能家居调光调色,你都可以借助MCP2MQTT快速原型、轻松上手。用自然语言控制硬件设备AI实时响应设备状态并调整物理参数让设
- 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
不二人生
大模型milvus数据库trae大模型
大模型——TRAE+MilvusMCP自然语言就能搞定向量数据库不久前,继Cursor和ClaudeDesktop在海外市场掀起智能编程浪潮后,字节跳动TRAE海外版也进入了付费模式。相较前两款海外产品,TRAE集成了代码补全、智能问答和Agent模式之外,还可以为中文开发者带来本土化的智能编程体验。恰逢其时,MilvusMCP服务器新增了SSE(Server-SentEvents)支持。相比传统
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 敏捷开发中的自然语言处理集成
项目管理实战手册
项目管理最佳实践敏捷流程自然语言处理easyuiai
敏捷开发中的自然语言处理集成:让代码与需求“说人话”关键词:敏捷开发、自然语言处理(NLP)、用户故事分析、需求自动化、持续集成优化摘要:在敏捷开发中,“快速响应变化”的核心目标常被繁琐的文本处理拖慢——需求文档像“天书”、用户故事靠“脑补”、缺陷报告整理耗时……自然语言处理(NLP)就像一位“智能翻译官”,能让开发团队与需求文档“流畅对话”。本文将用“搭积木”“翻译机”等生活化比喻,带您理解如何
- 电科金仓AI数据库一体机发布:30%性能提升+自然语言运维,重塑数据底座!
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
>百万级并发处理与聊天式数据库运维,正在中国企业机房掀起静默革命。“替换数据库是一件非常困难的事。”电科金仓总裁杜胜在7月15日北京发布会现场坦言。过去20多年里,国外数据库建立的标准让应用软件与数据库深度耦合,迁移复杂度高、改造成本大、停机风险难控。随着他身后大屏幕亮起**“数据库平替用金仓”**的全新口号,电科金仓正式向这一行业痛点宣战。这场名为“融合进化智领未来”的发布会,最耀眼的明星是**
- 使用Python调用Hugging Face Question Answering (问答)模型
墨如夜色
pythoneasyui开发语言Python
使用Python调用HuggingFaceQuestionAnswering(问答)模型在自然语言处理领域,问答系统是一种能够回答用户提出的问题的智能系统。HuggingFace是一个知名的开源软件库,提供了许多强大的自然语言处理工具和模型。其中,HuggingFace的QuestionAnswering模型可以帮助我们构建问答系统,使得我们能够从给定的文本中提取答案。本文将介绍如何使用Pytho
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- Pad Token技术原理与实现指南
Takoony
AI
目录概述理论基础:第一性原理分析技术实现机制工程最佳实践性能优化策略常见问题与解决方案技术发展趋势附录1.概述1.1文档目的本文档旨在深入阐述深度学习中PadToken的技术原理、实现机制及工程应用,为算法工程师提供全面的理论指导和实践参考。1.2适用范围自然语言处理模型开发序列数据批处理优化深度学习系统架构设计高性能计算资源管理1.3核心问题研究问题:为什么深度学习模型需要将变长序列统一到固定长
- 多语言文本分类在AI应用中的实践
AI原生应用开发
人工智能分类数据挖掘ai
多语言文本分类在AI应用中的实践关键词:多语言文本分类、自然语言处理、机器学习、深度学习、BERT、迁移学习、跨语言模型摘要:本文深入探讨多语言文本分类在AI领域的应用实践。我们将从基础概念出发,逐步讲解其核心原理、技术架构和实现方法,并通过实际案例展示如何构建一个高效的多语言文本分类系统。文章将涵盖从传统机器学习方法到最先进的深度学习技术,特别关注跨语言迁移学习在实际业务场景中的应用。背景介绍目
- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- ChatTongyi × LangChain:开启多模态AI应用创新之门
阿里云通义实验室推出的ChatTongyi(基于通义千问大模型)与LangChain框架的深度集成,为开发者打造了一套高效、灵活、全面的AI开发工具链。无论是文本对话、复杂任务自动化,还是图像理解,这一组合都为多场景智能应用的落地提供了坚实的基础。以下内容将从技术亮点到行业价值,带您系统梳理其核心能力与创新应用场景。1.极速上手:自然语言对话与流式输出核心能力:多轮对话理解:凭借强大的语言建模能力
- 大语言模型应用指南:网页实时浏览
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:网页实时浏览作者:禅与计算机程序设计艺术1.背景介绍1.1大语言模型的崛起1.1.1自然语言处理的发展历程1.1.2Transformer模型的突破1.1.3预训练语言模型的优势1.2网页浏览的痛点1.2.1信息过载与检索困难1.2.2内容理解与知识提取1.2.3个性化与智能化需求1.3大语言模型与网页浏览的结合1.3.1智能问答与对话系统1.3.2知识图谱与语义搜索1.3.3
- AI驱动型论文搜索工具
司南锤
AI工具
✅一、AI驱动型论文搜索工具(强烈推荐)1.Consensus官网:consensus.app特点:输入自然语言问题(如“Doesgreenspacereduceurbanheatislandeffect?”),系统会自动返回论文中直接回答该问题的句子,标明支持/不支持的证据。适合人群:科研人员、政策制定者、想快速得到文献共识的人。2.ScispaceCopilot(原SemanticSchola
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- 进阶向:基于Python的智能客服系统设计与实现
智能客服系统开发指南系统概述智能客服系统是人工智能领域的重要应用,它通过自然语言处理(NLP)和机器学习技术自动化处理用户查询,显著提升客户服务效率和响应速度。基于Python的实现方案因其丰富的生态系统(如NLTK、spaCy、Transformers等库)、跨平台兼容性以及易于集成的特点,成为开发智能客服系统的首选。系统架构系统核心包括两个主要功能模块:1.API集成模块负责连接各类外部服务,
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- Rust+ChatBoxAI:实战
ChatboxAIChatboxAI是一款基于人工智能技术的智能助手工具,旨在通过自然语言交互帮助用户完成多种任务。以下是其核心功能与特点:功能概述多模型支持:可连接OpenAI、Claude、Gemini等主流大语言模型,用户能自由切换不同AI服务。本地运行:支持离线使用,数据隐私性较强,适合敏感信息处理场景。跨平台兼容:提供Windows、macOS和Linux客户端,同步支持移动端应用。核心
- DeepSeekMath:突破开源语言模型在数学推理中的极限
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DeepSeekMath:突破开源语言模型在数学推理中的极限摘要数学推理由于其复杂且结构化的特性,对语言模型构成了重大挑战。本文介绍了DeepSeekMath7B,该模型在DeepSeek-Coder-Base-v1.57B的基础上继续进行了预训练,使用了来自CommonCrawl的120B数学相关token,同时包含自然语言和代码数据。DeepSeekM
- LLM词频规律:Zipf定律
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython深度学习人工智能pytorch语言模型python
LLM词频规律:Zipf定律Zipf定律(Zipf’sLaw)是语言学和信息论中描述文本中词语出现频率分布的规律,由美国语言学家乔治·金斯利·齐夫(GeorgeKingsleyZipf)提出。其核心结论是:在自然语言的大型文本语料中,若将所有词语按出现频率从高到低排序,第n个词语的频率与n的倒数大致成正比。Zipf定律的数学表达若用f(n)f(n)f(n)表示排序后第n个词语的出现频率,CC
- BPE(字节对编码)和WordPiece 是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法人工智能transformer深度学习
BPE(字节对编码)和WordPiece是什么BPE(字节对编码)和WordPiece是自然语言处理中常用的子词分词算法,它们通过将文本拆分为更小的语义单元来平衡词汇表大小和表达能力。BPE(BytePairEncoding,字节对编码)原理初始化:将文本按字符(或Unicode字节)拆分为最小单元,形成初始词汇表。统计合并:迭代合并最频繁出现的相邻字符对,形成新的子词单元,直到达到预设的词汇表大
- LLM模型 贪婪、温度、Top-k、核采样方式的区别---附代码与示例
繁星意未平
AIpython开发语言
LLM模型贪婪、温度、Top-k、核采样方式的区别—附代码与示例在自然语言生成任务中,不同的采样技术用于从语言模型的输出中选择下一个生成的单词或词语。这些技术包括贪婪采样、温度采样、Top-k采样和核(Nucleus)采样。它们在选择生成单词的过程中有不同的策略,本文将介绍这四种采样方式的区别。1.贪婪采样(GreedySampling)贪婪采样是一种直接选择最可能的下一个词的策略。具体步骤为:从
- 自动字幕生成器:Auto-Subtitle — 技术解析与应用指南
房耿园Hartley
自动字幕生成器:Auto-Subtitle—技术解析与应用指南在视频内容日益丰富的今天,自动字幕生成工具变得越来越重要,尤其是对于听障人士、非母语者和在嘈杂环境下观看视频的人来说。Auto-Subtitle是一个开源项目,它利用先进的自然语言处理(NLP)技术为你的视频自动生成准确的字幕。本文将深入探讨这个项目的原理、功能、应用场景及特点,以期吸引更多开发者和用户关注并使用。项目简介Auto-Su
- NUS:LLM表格数据建模综述
标题:LanguageModelingonTabularData:ASurveyofFoundations,TechniquesandEvolution来源:arXiv,2408.10548摘要表格数据是一种跨领域的流行数据类型,由于其异构性和复杂的结构关系,带来了独特的挑战。在表格数据分析中实现高预测性能和鲁棒性对许多应用程序具有重大前景。受自然语言处理,特别是转换器架构的最新进展的影响,出现了
- GPT-4和Claude哪个好
姜暮儿
人工智能
选择GPT-4还是Claude?这就像在问“苹果还是橙子哪个更好”——答案完全取决于你的具体需求。两者都是顶尖大语言模型,但各有特色。我为你做了详细对比,帮你快速定位哪个更适合你:核心能力对比特性GPT-4(OpenAI)Claude(Anthropic)语言理解/推理顶尖水平,尤其擅长逻辑推理、代码生成极强,注重自然语言流畅性长文本处理上下文最大128Ktokens,但实际效果不如C
- 一文清楚比较Kiro与Cursor
AWS公司最近发布了AIIDE。以下是Kiro与Cursor两款AI编程IDE的核心差异总结:1.核心定位与开发范式维度KiroCursor诞生背景亚马逊2025年推出,对标CursorVSCode分支,2023年起流行核心范式规范驱动开发:先写自然语言需求→AI生成完整模块(含测试、文档)AI增强编码:边写代码→实时AI补全/重构目标用户企业/大型团队、AWS深度用户个人开发者/小团队、学习者2
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文