- 在 PyTorch 训练中使用 `tqdm` 显示进度条
weixin_48705841
pytorch人工智能python
在PyTorch训练中使用tqdm显示进度条在深度学习的训练过程中,实时查看训练进度是非常重要的,它可以帮助我们更好地理解训练的效率,并及时调整模型或优化参数。使用tqdm库来为训练过程添加进度条是一个非常有效的方式,本文将介绍如何在PyTorch中结合tqdm来动态显示训练进度。1.安装tqdm库首先,如果你还没有安装tqdm,可以通过pip命令进行安装:pipinstalltqdmtqdm是一
- 【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
weixin_48705841
人工智能
在PyTorch中使用tqdm显示训练进度条,并解决常见错误TypeError:'module'objectisnotcallable在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用tqdm库,它可以非常方便地为你提供进度条显示。1.什么是tqdm?TQDM是一个快速、可扩展的Python进度条库。它可以用来显示迭代的进度,帮助
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 深度学习环境配置指南!(Windows、Mac、Ubuntu全讲解)
Charmve
#AI学习指导:从入门到进阶软件安装环境配置计算机视觉实战文档详细开放源码cudalinuxgpuanacondaubuntu
关注“迈微AI研习社”,内容首发于公众号作者:伍天舟、马曾欧、陈信达入门深度学习,很多人经历了从入门到放弃的心酸历程,且千军万马倒在了入门第一道关卡:环境配置问题。俗话说,环境配不对,学习两行泪。如果你正在面临配置环境的痛苦,不管你是Windows用户、Ubuntu用户还是苹果死忠粉,这篇文章都是为你量身定制的。接下来就依次讲下Windows、Mac和Ubuntu的深度学习环境配置问题。一、Win
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 深度学习-92-大语言模型LLM之基于langchain的模型IO的模型调用
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Model的输入输出2langchain支持的模型3调用Ollama模型3.1设置环境变量3.2大语言模型LLM(OllamaLLM)3.2.1生成文本补全3.2.2流式生成文本补全3.3聊天模型(ChatOllama)3.3.1内置的消息类型3.3.2HumanMessage和SystemMessage3.3.3元组方式构成消息列表3.3.4stream流式3.4文本嵌入模型(Olla
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- 【Python】已解决ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 【Python】已解决:ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习Transformer框架
Clown爱电脑
深度学习transformer人工智能自然语言处理机器学习
Transformer是一种深度学习框架,专门用于处理序列数据。它是2017年由Vaswani等人提出的,在NLP领域取得了很大的成功。Transformer的主要优势在于它可以并行地处理输入序列中的所有元素,并且不依赖于序列长度。它使用了self-attention机制,可以在序列中不同位置的元素之间建立联系。这使得Transformer在许多NLP任务中取得了最先进的性能。此外,Transfo
- 【深度学习】Pytorch:在 ResNet 中加入注意力机制
T0uken
深度学习pytorch人工智能
在这篇教程中,我们将介绍如何在ResNet网络中加入注意力机制模块。我们将通过对标准ResNet50进行改进,向网络中添加两个自定义的注意力模块,并展示如何实现这一过程。为什么要加入注意力机制注意力机制可以帮助神经网络专注于图像中重要的特征区域,从而提高模型的性能。在卷积神经网络中,加入注意力机制能够有效增强特征提取能力,减少冗余信息的干扰,尤其在处理复杂图像时,能够提升网络的表现。在本教程中,我
- 时间序列预测综述
Super_Whw
时序预测
文章目录非周期时间序列预测1.转化为监督学习数据集,使用xgboot/LSTM模型/时间卷积网络/seq2seq(attention_based_model)2.Facebook-prophet,类似于STL分解思路3.深度学习网络,结合CNN+RNN+Attention,作用各不相同互相配合参考:非周期时间序列预测1.转化为监督学习数据集,使用xgboot/LSTM模型/时间卷积网络/seq2s
- IGModel——提高基于 GNN与Attention 机制的方法在药物发现中的实用性
Jackie_AI
计算机视觉stablediffusion自然语言处理语言模型Imagen
IGModel——提高基于GNN与Attention机制的方法在药物发现中的实用性导言深度学习在药物发现(发现治疗药物)领域的应用以及传统方法面临的挑战。药物(尤其是我们将在本文中讨论的被称为抑制剂的药物)通过与在人体中发挥不良功能的蛋白质结合并改变这些蛋白质的功能来发挥治疗效果。因此,在设计药物时,必须优化这些结合的亲和力和药理特性,并准确预测蛋白质与药物之间的相互作用。近年来,人们尤其提倡使用
- 基于YOLOv5、YOLOv8和YOLOv10的机场安检行李检测:深度学习应用与实现
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言随着全球航空运输业的持续增长,机场的安全性变得越来越重要。机场安检作为航空安全的重要组成部分,主要负责对乘客和行李进行检查,防止危险物品进入机场或飞行器。传统的安检方式多依赖人工检查,效率低下且容易出错。因此,基于深度学习的自动化行李检测系统应运而生,通过计算机视觉技术,自动识别和分类行李中的物品,大大提高了安检的效率与准确性。YOLO(YouOnlyLookOnce)系列算法,由于其高效的目
- 深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
网络安全研发随想
rnngptlstm
从简单的RNN到复杂的LSTM/GRU,再到引入注意力机制,研究者们一直在努力解决序列建模的核心问题。每一步的进展都为下一步的突破奠定了基础,最终孕育出了革命性的Transformer架构和GPT大模型。1.从n-gram到循环神经网络(RNN)的诞生1.1N-gram模型在深度学习兴起之前,处理序列数据主要依靠统计方法,如n-gram模型。N-gram是一种基于统计的语言模型,它的核心思想是:一
- 深度学习理论基础(七)Transformer编码器和解码器
小仇学长
深度学习深度学习transformer人工智能编码器解码器
学习目录:深度学习理论基础(一)Python及Torch基础篇深度学习理论基础(二)深度神经网络DNN深度学习理论基础(三)封装数据集及手写数字识别深度学习理论基础(四)Parser命令行参数模块深度学习理论基础(五)卷积神经网络CNN深度学习理论基础(六)Transformer多头自注意力机制深度学习理论基础(七)Transformer编码器和解码器本文目录学习目录:前述:Transformer
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 深度学习中超参数
fengbingchun
DeepLearninghyperparameter
深度学习中的超参数(hyperparameters)是决定网络结构的变量(例如隐藏层数量)和决定网络训练方式的变量(例如学习率)。超参数的选择会显著影响训练模型所需的时间,也会影响模型的性能。超参数是在训练开始之前设置的,而不是从数据中学习的参数。超参数是模型训练期间无法学习的参数,需要事先设置。在深度学习中,模型由模型参数(如神经网络的权重和偏置)定义或表示。然而,训练模型的过程涉及选择最佳超参
- 基于MATLAB机器学习、深度学习实践技术应用
梦想的初衷~
机器学习人工智能matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。原文链接https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=224
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h