Python3.0之后加入新特性Decorators,以@为标记修饰function和class。有点类似c++的宏和java的注解。Decorators用以修饰约束function和class,分为带参数和不带参数,影响原有输出,例如类静态函数我们要表达的时候需要函数前面加上修饰@staticmethod或@classmethod,为什么这样做呢?下面用简单的例子来看一下,具体内容可以查看:官方解释
不带参数的单一使用
def spamrun(fn):
def sayspam(*args):
print("spam,spam,spam")
fn(*args)
return sayspam
@spamrun
def useful(a,b):
print(a*b)
if __name__ == "__main__"
useful(2,5)
运行结果
spam,spam,spam
10
函数useful本身应该只是打印10
,可是为什么最后的结果是这样的呢,其实我们可以简单的把这个代码理解为
def spamrun(fn):
def sayspam(*args):
print("spam,spam,spam")
fn(*args)
return sayspam
def useful(a,b):
print(a*b)
if __name__ == "__main__"
useful = spamrun(useful)
useful(a,b)
def spamrun(fn):
def sayspam(*args):
print("spam,spam,spam")
fn(*args)
return sayspam
def spamrun1(fn):
def sayspam1(*args):
print("spam1,spam1,spam1")
fn(*args)
return sayspam1
@spamrun
@spamrun1
def useful(a,b):
print(a*b)
if __name__ == "__main__"
useful(2,5)
运行结果
spam,spam,spam
spam1,spam1,spam1
10
这个代码理解为
if __name__ == "__main__"
useful = spamrun1(spamrun(useful))
useful(a,b)
带参数的单次使用
def attrs(**kwds):
def decorate(f):
for k in kwds:
setattr(f, k, kwds[k])
return f
return decorate
@attrs(versionadded="2.2",
author="Guido van Rossum")
def mymethod(f):
print(getattr(mymethod,'versionadded',0))
print(getattr(mymethod,'author',0))
print(f)
if __name__ == "__main__"
mymethod(2)
if __name__ == "__main__"
func = accepts(int, (int, float)).(accepts((int, float)).(mymethod))
a = func(1, 'b')
print(a)
说到这里,大家不难看出其实我们可以使用Decorators做很多工作,简化代码,使逻辑更清晰等。还有更多的用法等着大家自己去挖掘了,这里只简单的介绍了针对函数的用法,其实还可以针对class使用,具体的大家自己看看官方介绍,结合这篇文档应该就不难理解了。