Linux服务器硬件及RAID

服务器硬件及RAID

RAID 将一组硬盘连结成来,组成一个阵列,以避免单个硬盘损坏而带来的数据损失, 同时亦提供了比单个硬盘高的可用性及容错性。常见的组合方式有:RAID0、RAID1、RAID5、RAID6、RAID01、RAID10

文章目录

  • 服务器硬件及RAID
  • RAID磁盘阵列介绍
    • RAID0
    • RAID1
    • RAID5
    • RAID6
    • RAID1+0
    • 阵列卡介绍
  • 阵列卡接口类型
    • IDE 接口
    • SCSI 接口
    • SATA 接口
    • SAS 接口
    • 阵列卡的缓存

RAID磁盘阵列介绍

  • 是Redundant Array of Independent Disks的缩写,中文简称为独立冗余磁盘阵列。
  • 把多块独立的物理硬盘按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据备份技术。
  • 组成磁盘阵列的不同方式称为RAID级别(RAID Levels)。

RAID0

RAID0 俗称“条带”,它将两个或多个硬盘组成一个逻辑硬盘,容量是所有硬盘之和, 因为是多个硬盘组合成一个,故可并行写操作,写入速度提高,但此方式硬盘数据没有冗余, 没有容错,一旦一个物理硬盘损坏,则所有数据均丢失。因而,RAID0 适合于对数据量大, 但安全性要求不高的场景,比如音像、视频文件的存储等。
Linux服务器硬件及RAID_第1张图片
N块硬盘并行组合成一个新的逻辑盘

  • RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余
  • RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据
  • RAID不能应用于数据安全性要求高的场合

RAID1

RAID1 俗称“镜像”,它最少由两个硬盘组成,且两个硬盘上存储的数据均相同,以实现数据冗余。RAID1 读操作速度有所提高,写操作理论上与单硬盘速度一样,但由于数据需要同时写入所有硬盘,实际上稍为下降。容错性是所有组合方式里最好的,只要有一块硬盘正常,则能保持正常工作。但它对硬盘容量的利用率则是最低,只有 50%,因而成本也是最高。RAID1 适合对数据安全性要求非常高的场景,比如存储数据库数据文件之类。
Linux服务器硬件及RAID_第2张图片
N(偶数)块硬盘组合成一组镜像,N/2容量

  • 通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据
  • 当原始数据繁忙时,可直接从镜像拷贝中
    读取数据,因此RAID 1可以提高读取性能
  • RAID 1是磁盘阵列中单位成本最高的,
    但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据

RAID5

RAID5 最少由三个硬盘组成,它将数据分散存储于阵列中的每个硬盘,并且还伴有一个数据校验位,数据位与校验位通过算法能相互验证,当丢失其中的一位时,RAID 控制器能通过算法,利用其它两位数据将丢失的数据进行计算还原。因而 RAID5 最多能允许一个硬盘损坏,有容错性。RAID5 相对于其它的组合方式,在容错与成本方面有一个平衡,因而受到大多数使用者的欢迎。一般的磁盘阵列,最常使用的就是 RAID5 这种方式。
Linux服务器硬件及RAID_第3张图片

  • N (N>=3) 块盘组成阵列,一份数据产生N-1个条带,同时还有1份校验数据,共N份数据在N块盘上循环均衡存储
  • N块盘同时读写,读性能很高,但由于有校验机制的问题,写性能相对不高
  • (N-1) /N磁盘利用率
  • 可靠性高,允许坏1块盘,不影响所有数据

RAID6

RAID6 是在 RAID5 的基础上改良而成的,RAID6 再将数据校验位增加一位,所以允许损坏的硬盘数量也由RAID5 的一个增加到二个。由于同一阵列中两个硬盘同时损坏的概率非常少,所以,RAID6 用增加一块硬盘的代价,换来了比 RAID5 更高的数据安全性。
Linux服务器硬件及RAID_第4张图片

  • N (N>=4) 块盘组成阵列,(N-2) /N磁盘利用率
  • 与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块
  • 两个独立的奇偶系统使用不同的算法,即使两块磁盘同时失效也不会影响数据的使用
  • 相对于RAID 5有更大的“写损失”因此写性能较差

RAID1+0

RAID1+0 是先将数据进行镜像操作,然后再对数据进行分组,RAID 1 在这里就是一个冗余的备份阵列,而RAID 0 则负责数据的读写阵列。至少要四块盘,两块做 raid0,另两块做raid1,RAID 10 对存储容量的利用率和 RAID 1 一样低,只有 50%。
Raid1+0 方案造成了 50%的磁盘浪费,但是它提供了 200%的速度和单磁盘损坏的数据安全性,并且当同时损坏的磁盘不在同一 Raid1 中,就能保证数据安全性、RAID 10 能提供比RAID 5 更好的性能。这种新结构的可扩充性不好,使用此方案比较昂贵。
Linux服务器硬件及RAID_第5张图片

  • N (偶数,N>=4) 块盘两两镜像后,再组合成一个RAID 0
  • N/2磁盘利用率
  • N/2块盘同时写入,N块盘同时读.取
  • 性能高,可靠性高

阵列卡介绍

阵列卡的全称叫磁盘阵列卡 是用来做 RAID 的。磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。冗余磁盘阵列RAID(Redundant Array of Independent Disks)技术 1987 年由加州大学伯克利分校提出, 最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用(当时 RAID 称为 dundant Array of Inexpensive Disks 廉价的磁盘阵列),同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术。

  • 阵列卡是用来实现RAID功能的板卡
  • 通常是由I/O处理器、硬盘控制器、硬盘连接器和缓存等一系列组件构成的
  • 不同的RAID卡支持的RAID功能不同
  • RAID卡的接口类型
  • IDE接口、SCSI接口、 SATA接口和SAS接口

阵列卡接口类型

接口类型目前主要有几种:IDE 接口、SCSI 接口、SATA 接口和 SAS 接口。

IDE 接口

IDE 的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”它是把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器,这样使得硬盘接口的电缆数目与长度有所减少,从而数据传输的可靠性得到增强,IDE接口价格低廉,兼容性强,在实际的应用中,这种类型的接口随着接口技术的不断发展已经很少用了,逐渐被后续发展分支出更多类型的硬盘接口所取代。

SCSI 接口

SCSI 的英文全称为“Small Computer System Interface”(小型计算机系统接口), 是同 IDE 完全不同的接口,IDE 接口是普通 PC 的标准接口,而 SCSI 并不是专门为硬盘设计的接口,是一种广泛应用于小型机上的高速数据传输技术。SCSI 接口具有应用范围广、多任务、带宽大、CPU 占用率低,以及支持热插拔等优点,但较高的价格使得它很难如 IDE 硬盘般普及,因此 SCSI 硬盘主要应用于中、高端和高档工作站中。SCSI 硬盘和普通 IDE 硬盘相比有很多优点:接口速度快,并且由于主要用于服务器,因此硬盘本身的性能也比较高, 硬盘转速快,缓存容量大,CPU 占用率低,扩展性远优于 IDE 硬盘,并且支持热插拔。

SATA 接口

使用 SATA(Serial ATA)口的硬盘又叫串口硬盘,是目前 PC 硬盘的主流。2001 年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的 Serial ATA 委员会正式确立了 Serial ATA 1.0 规范,2002 年,虽然串行 ATA 的相关设备还未正式上市,但 Serial ATA 委员会已抢先确立了 Serial ATA 2.0 规范。Serial ATA 采用串行连接方式,串行 ATA 总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
串口硬盘是一种完全不同于并行 ATA 的硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行 ATA 来说,就具有非常多的优势。首先,Serial ATA 以连续串行的方式传送数据,一次只会传送 1 位数据。这样能减少 SATA 接口的针脚数目,使连接电缆数目变少, 效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA 的起点更高、发展潜力更大,Serial ATA 1.0 定义的数据传输率为 150MB/s,这比并行 ATA(即 ATA/133)所能达到 133MB/s 的最高数据传输率还高,而在 Serial ATA 2.0 的数据传输率达到 300MB/s,SATA Revision 3.0 可达到 750 MB/s 的最高数据传输率。

SAS 接口

SAS 是新一代的 SCSI 技术,和现在流行的 Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS 是并行 SCSI 接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行 ATA (Serial ATA,缩写为 SATA)硬盘的兼容性。
SAS 的接口技术可以向下兼容 SATA。SAS 系统的背板(Backpanel)既可以连接具有双端口、高性能的 SAS 驱动器,也可以连接高容量、低成本的 SATA 驱动器。因为 SAS 驱动器的端口与 SATA 驱动器的端口形状看上去类似,所以 SAS 驱动器和 SATA 驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA 系统并不兼容 SAS,所以 SAS 驱动器不能连接到SATA 背板上。由于 SAS 系统的兼容性,IT 人员能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。

串行 SCSI 是点到点的结构,可以建立磁盘到控制器的直接连接。具有以下特点:
-更好的性能
点到点的技术减少了地址冲突以及菊花链连结的减速; 为每个设备提供了专用的信号通路来保证最大的带宽; 全双工方式下的数据操作保证最有效的数据吞吐量;
-简便的线缆连结
更细的电缆搭配更小的连接器;
-更好的扩展性
可以同时连结更多的磁盘设备。

阵列卡的缓存

是 RAID 卡与外部总线交换数据的场所,RAID 卡先将数据传送到缓存, 再由缓存和外边数据总线交换数据。它是 RAID 卡电路板上的一块存储芯片,与硬盘盘片相比,具有极快的存取速度,实际上就是相对低速的硬盘盘片与相对高速的外部设备(例如内存)之间的缓冲器。缓存的大小与速度是直接关系到 RAID 卡的实际传输速度的重要因素,大缓存能够大幅度地提高数据命中率从而提高 RAID 卡整体性能。多数 RAID 卡都配备了一定数量的内存作为高速缓存使用。不同的 RAID 卡出厂时配备的内存容量不同,一般为几兆到数百兆容量不等,这取决于磁盘阵列产品的应用范围。

Write Through 和 Write Back 是阵列卡缓存的两种使用方式,也称为透写和回写。Write Through 也是 RAID 阵列卡的默认模式。当选用 write through 方式时,系统的写磁盘操作并不利用阵列卡的 Cache,而是直接与磁盘进行数据的交互。而 write Back 方式则利用列 Cache 作为系统与磁盘间的二传手,系统先将数据交给 Cache,然后再由 Cache 将数据传给磁盘。

  • 缓存(Cache)是RAID卡与外部总线交换数据的场所
  • RAID卡先将数据传送到缓存,再由缓存和外边数据总线交换数据
  • 缓存的大小与速度是直接关系到RAID卡的实际传输速度的重要因素
  • 不同的RAID卡出厂时配备的内存容量不同,一般为几兆到数百兆容量不等

你可能感兴趣的:(【Linux系统管理】基础知识)