数据结构与算法(栈和队列)

首语

  • 历经一个月的时间,自己终于搭建完成了个人网站,还在持续优化中,网站采用halo博客系统,功能非常强大!欢迎大家来我的网站逛逛。有什么建议可以留言!

网站地址:http://www.yanghujun.com

  • 接下来我们开始第二节的数据结构学习,栈和队列。

  • 栈是限定仅在表尾进行插入和删除操作的线性表。
  • 允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom),不含任何数据元素的栈称为空栈。栈又称为后进先出 的线性表。
    数据结构与算法(栈和队列)_第1张图片

栈的顺序存储结构

  • 如用数组实现,栈底是:下标为0的一端。
    数据结构与算法(栈和队列)_第2张图片

栈的链式存储结构

数据结构与算法(栈和队列)_第3张图片

链栈的出入栈操作

  • 链栈的入栈操作
    数据结构与算法(栈和队列)_第4张图片
s->data=e;
s->next=stack->top;
stack->top=s;
stack->count++;
  • 链栈的出栈操作

数据结构与算法(栈和队列)_第5张图片

p=stack->top
stack->top=p->next;
free(p)
stack->count--;

栈的经典实用(逆波兰表达式法)

  • 标准四则运算表达式——中缀表达式
    9+(3-1)*3+10/2
  • 计算机采用——后缀表达式
    9 3 1 - 3 * + 10 2 / +
    数据结构与算法(栈和队列)_第6张图片
中缀表达式转后缀表达式

数字输出,运算符进栈,括号匹配出栈,栈顶优先级低出栈。

数据结构与算法(栈和队列)_第7张图片

代码实现

  • 中缀表达式->后缀表达式
/**
     * @param expression 逆波兰表达式
     * 数字输出,运算符进栈,括号匹配出栈,栈顶优先级低出栈
     * @return 后缀式链表
     */
    public static LinkedList<String> parse(String expression) {
        // 结果输出栈
        LinkedList<String> output = new LinkedList<>();
        // 运算符栈
        Stack<Character> operators = new Stack<>();
        // 字符串截取起始位置
        int startPos = 0;
        // 字符串截取末尾位置
        int endPos = 0;
        // 正序遍历表达式中的每一个字符c
        for (char c : expression.toCharArray()) {
            // 字符串截取的结束位置+1
            ++endPos;
            // 判断字符c是否为运算符。
            if (isOperator(c)) {
                // 若运算符c之前有可保存的信息则将其作为一个整体保存至output链表。
                if (startPos < endPos - 1)
                    output.add(expression.substring(startPos, endPos - 1));
                // 更新字符串截取的起始位置
                startPos = endPos;
                // 若运算符c为左括号"(",则直接存入运算符栈。
                if (c == '(') {
                    operators.push(c);
                    // 若运算符c为右括号")",则依次从运算符栈中弹出运算符并保存至output链表,直到遇到左括号为止。
                } else if (c == ')') {
                    char op;
                    while (!operators.isEmpty() && (op = operators.pop()) != '(') {
                        output.add(String.valueOf(op));
                    }
                    // 若运算符c为非括号运算符(即:四则运算符号)
                } else {

                    // 若运算符栈为空则直接将c压栈至运算符栈。
                    if (operators.isEmpty()) {
                        operators.push(c);
                        // 若运算符栈栈顶的运算符为左括号,则将c直接压栈至运算符栈。
                    } else if (operators.peek() == '(') {
                        operators.push(c);
                        // 若运算符c的优先级高于运算符栈栈顶的运算符优先级,则将c压栈至运算符栈。
                    } else if (getOperatorPriorityValue(c) > getOperatorPriorityValue(operators.peek())) {
                        operators.push(c);
                        // 若运算符c的优先级小于或等于运算符栈栈顶的运算符优先级,则依次从运算符栈中弹出运算符并保存至output链表,直到遇到左括号或c的优先级高于栈顶运算符优先级的为止。再将c压栈至运算符栈。
                    } else {
                        while (!operators.isEmpty() && getOperatorPriorityValue(c) <= getOperatorPriorityValue(operators.peek()) && operators.peek() != '(') {
                            output.add(String.valueOf(operators.pop()));
                        }
                        operators.push(c);
                    }
                }
            }
        }

        // 当表达式遍历完成后,将尚未保存的非运算符信息作为整体保存至output链表。若运算符栈中尚有运算符时,则依序弹出运算符到output链表。
        if (startPos < expression.length()) output.add(expression.substring(startPos));
        while (!operators.isEmpty()) {
            output.add(String.valueOf(operators.pop()));
        }
        return output;
    }

 // 运算符
    private final static char[] OP = new char[]{'+', '-', '*', '/', '(', ')'};
    /**
     * 判断字符是否是运算符
     * @param op 运算符
     * @return 是运算符返回true,不是则返回false
     */
    public static boolean isOperator(char op) {
        for (int i = 0; i < OP.length; ++i) {
            if (op == OP[i])
                return true;
        }
        return false;
    }
	/**
     * 获取运算符优先等级
     * @param op 运算符
     * @return 根据OP数组中运算符的顺序计算出运算符的优先等级:+ -是0级,* /是1级,( )是2级
     */
    public static int getOperatorPriorityValue(char op) {
        return (String.copyValueOf(OP).indexOf(op)) / 2;
    }

  • 后缀表达式计算
/**
     * 表达式计算
     * 先将中缀表达式转换为后缀表达式,再计算表达式的结果
     * @param expression 表达式
     * @return 运算结果
     */
    public static double operation(String expression) {

        // 使用逆波兰算法处理
        LinkedList<String> rpnList = RPN.parse(expression);

        // 保存每一步运算结果的操作数栈
        Stack<Double> operands = new Stack<>();

        // 若表达式第一位为运算符,则表达式无效


        // 遍历逆波兰表达式中每一项元素
        for (String elem : rpnList) {

            // 若是运算符
            if (RPN.isOperator(elem.charAt(0))) {


                // 从操作数栈取出栈顶的两个操作数
                double value2 = operands.pop();
                double value1 = operands.pop();

                // 获得运算结果
                double result = binaryOperation(elem.charAt(0), value1, value2);

                // 将计算结果压栈
                operands.push(result);

                // 如果是数值
            } else {
                operands.push(Double.parseDouble(elem));
            }
        }

        // 返回操作数栈中唯一的元素
        return operands.pop();
    }
  /**
     * 二元运算
     * @param operator 运算符
     * @param value1   值1
     * @param value2   值2
     * @return 运算结果
     */
    private static double binaryOperation(char operator, double value1, double value2) {
        switch (operator) {
            case '+':
                return value1 + value2;
            case '-':
                return value1 - value2;
            case '*':
                return value1 * value2;
            case '/':
                if (value2 == 0) throw new ArithmeticException("/ by zero.");
                return value1 / value2;
            default:
                throw new RuntimeException("");
        }
    }

栈(Stack)源码

/**
     * Pushes an item onto the top of this stack. This has exactly
     * the same effect as:
     * 
     * addElement(item)
* @param item the item to be pushed onto this stack. * @return the item argument. * @see java.util.Vector#addElement */
public E push(E item) { addElement(item); return item; } /** * Adds the specified component to the end of this vector, * increasing its size by one. The capacity of this vector is * increased if its size becomes greater than its capacity. *

This method is identical in functionality to the * {@link #add(Object) add(E)} * method (which is part of the {@link List} interface). * @param obj the component to be added */ public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; } /** * This implements the unsynchronized semantics of ensureCapacity. * Synchronized methods in this class can internally call this * method for ensuring capacity without incurring the cost of an * extra synchronization. * @see #ensureCapacity(int) */ private void ensureCapacityHelper(int minCapacity) { // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); }

/**
     * Removes the object at the top of this stack and returns that
     * object as the value of this function.
     * @return  The object at the top of this stack (the last item
     *          of the Vector object).
     * @throws  EmptyStackException  if this stack is empty.
     */
    public synchronized E pop() {
        E       obj;
        int     len = size();
        obj = peek();
        removeElementAt(len - 1);
        return obj;
    }
     /**
     * Deletes the component at the specified index. Each component in
     * this vector with an index greater or equal to the specified
     * {@code index} is shifted downward to have an index one
     * smaller than the value it had previously. The size of this vector
     * is decreased by {@code 1}.
     * 

The index must be a value greater than or equal to {@code 0} * and less than the current size of the vector. *

This method is identical in functionality to the {@link #remove(int)} * method (which is part of the {@link List} interface). Note that the * {@code remove} method returns the old value that was stored at the * specified position. * @param index the index of the object to remove * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } int j = elementCount - index - 1; if (j > 0) { System.arraycopy(elementData, index + 1, elementData, index, j); } elementCount--; elementData[elementCount] = null; /* to let gc do its work */ }

/**
     * Looks at the object at the top of this stack without removing it
     * from the stack.
     *
     * @return  the object at the top of this stack (the last item
     *          of the Vector object).
     * @throws  EmptyStackException  if this stack is empty.
     */
    public synchronized E peek() {
        int     len = size();

        if (len == 0)
            throw new EmptyStackException();
        return elementAt(len - 1);
    }
    /**
     * Returns the component at the specified index.
     * 

This method is identical in functionality to the {@link #get(int)} * method (which is part of the {@link List} interface). * @param index an index into this vector * @return the component at the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized E elementAt(int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return elementData(index); }

队列

  • 队列是只允许在一端进行插入操作、而在另一端进行删除操作的线性表!
  • 插入的一端称为队尾,删除的一端称为队头。
    数据结构与算法(栈和队列)_第8张图片

队列的顺序存储

  • 缺点
    1.出队复杂度高o(n)
    2.容易假溢出。
    数据结构与算法(栈和队列)_第9张图片
    数据结构与算法(栈和队列)_第10张图片

循环队列

  • 把队列的这种头尾相接的顺序存储结构称为循环队列。
    数据结构与算法(栈和队列)_第11张图片

队列的连式存储及结构模式

  • 队列的链式存储结构,其实就是线性表的单链表,只不过是它只能尾进头出而已。
    数据结构与算法(栈和队列)_第12张图片
  • 空队列
    数据结构与算法(栈和队列)_第13张图片

队列(Queue)源码

/**
     * Appends the specified element to the end of this Vector.
     * @param e element to be appended to this Vector
     * @return {@code true} (as specified by {@link Collection#add})
     * @since 1.2
     */
    public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = e;
        return true;
    }
    /**
     * This implements the unsynchronized semantics of ensureCapacity.
     * Synchronized methods in this class can internally call this
     * method for ensuring capacity without incurring the cost of an
     * extra synchronization.
     *
     * @see #ensureCapacity(int)
     */
    private void ensureCapacityHelper(int minCapacity) {
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

你可能感兴趣的:(数据结构与算法)