百度paddle框架学习(一):简单DNN完成手势识别

 

一、图像预处理

1.1 数据集来源

百度AI Studio平台手势识别数据集:https://aistudio.baidu.com/aistudio/datasetdetail/2182

1.2 目录结构

解压数据集中Dataset.zip文件,删除数据集文件夹中名为.DS_Store的文件,得到如图目录结构:
百度paddle框架学习(一):简单DNN完成手势识别_第1张图片

1.3 图像预处理代码

  1. 生成图像列表(10%的数据用于测试,90%的数据用于训练)
import os


data_path = './Dataset'
character_folders = os.listdir(data_path)
if os.path.exists('./train_data.txt'):
    os.remove('./train_data.txt')
if os.path.exists('./test_data.txt'):
    os.remove('./test_data.txt')

for character_folder in character_folders:
    with open('./train_data.txt', 'a') as f_train:
        with open('./test_data.txt', 'a') as f_test:
            if character_folder == '.DS_Store':
                continue
            character_imgs = os.listdir(os.path.join(data_path, character_folder))
            count = 0
            for img in character_imgs:
                if img == '.DS_Store':
                    continue
                if count % 10 == 0:
                    f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                else:
                    f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                count += 1
print('数据列表生成完成')
定义训练集和测试集reader,生成data文件
import os
import paddle
import numpy as np

from PIL import Image
from multiprocessing import cpu_count

# 定义训练集和测试集的reader
def data_mapper(sample):
    """读取图片,对图片进行归一化处理,返回图片和标签
    """
    img, label = sample
    img = Image.open(img)
    img = img.resize((100, 100), Image.ANTIALIAS)
    img = np.array(img).astype('float32')
    img = img.transpose((2, 0, 1))  # 读出来的图像为rgb图像,转至成为rrr、ggg、bbb
    img = img / 255.0
    return img, label


def data_reader(data_list_path):
    """按照train_list和test_list批量读取图片
    """
    def reader():
        with open(data_list_path, 'r') as f:
            lines = f.readlines()
            for line in lines:
                img, label = line.split('\t')
                yield img, int(label)

    return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)


train_reader = paddle.batch(
    reader=paddle.reader.shuffle(reader=data_reader('./train_data.txt'),  # shuffle()有一个乱序过程保证训练结果具有较好泛化能力
                                 buf_size=256),
    batch_size=32)
test_reader = paddle.batch(reader=data_reader('./test_data.txt'), batch_size=32)

 


说明:当前目录下生成的 train_data.txt 和 test_data.txt 文件主要用于存储数据路径和分类标签,内容如下,test_data.txt ——>
百度paddle框架学习(一):简单DNN完成手势识别_第2张图片
train_data.txt ——>
百度paddle框架学习(一):简单DNN完成手势识别_第3张图片

二、网络模型定义与训练

2.1 网络模型定义

说明:网络模型为简单的DNN模型,代码如下

import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear

# 网络模型定义
class MyDNN(fluid.dygraph.Layer):
    def __init__(self):
        super(MyDNN, self).__init__()
        self.hidden1 = Linear(100, 100, act='relu')
        self.hidden2 = Linear(100, 100, act='relu')
        self.hidden3 = Linear(100, 100, act='relu')
        self.hidden4 = Linear(3 * 100 * 100, 10, act='softmax')

    def forward(self, input):
        x = self.hidden1(input)
        x = self.hidden2(x)
        x = self.hidden3(x)
        x = fluid.layers.reshape(x, shape=[-1, 3 * 100 * 100])
        y = self.hidden4(x)
        return y

2.2 模型训练代码

import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers

from PIL import Image
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Linear

# 训练
with fluid.dygraph.guard():
    l_rate = 0.001
    model = MyDNN()
    model.train()
    opt = fluid.optimizer.SGDOptimizer(learning_rate=l_rate,
                                       parameter_list=model.parameters())   # 梯度下降
    epochs_num = 10     # 迭代次数
    for pass_num in range(epochs_num):
        for batch_id, data in enumerate(train_reader()):
            images = np.array([x[0].reshape(3, 100, 100) for x in data], np.float32)
            labels = np.array([x[1] for x in data]).astype('int64')
            labels = labels[:, np.newaxis]
            # 将ny转换成dygraph接收输入,该函数实现从numpy.ndarray对象创建一个variable类型对象
            image = fluid.dygraph.to_variable(images)
            label = fluid.dygraph.to_variable(labels)
            predict = model(image)

            loss = layers.cross_entropy(predict, label)     # 交叉熵
            avg_loss = layers.mean(loss)
            acc = layers.accuracy(predict, label)   # 精度计算

            if batch_id != 0 and batch_id % 15 == 0:
                print('train_pass:{}, batch_id:{}, train_loss:{}, acc:{}'.format(pass_num,
                                                                                 batch_id,
                                                                                 avg_loss.numpy(),
                                                                                 acc.numpy()[0],
                                                                                 ))
            avg_loss.backward()         # 使用backward()方法执行反向网络
            opt.minimize(avg_loss)      # 调用定义的优化器对象的minimize方法进行参数更新
            model.clear_gradients()     # 每一轮参数更新完成后调用clear_gradients()重置梯度,保证下一轮准确性

    fluid.save_dygraph(model.state_dict(), 'MyDNN')

说明:模型训练时简单迭代10次,训练出的模型效果并不好,这里主要提供一种代码思路,并未做任何优化。保存的模型文件名为”MyDNN.pdparams",保存在当前目录下。


训练过程:
百度paddle框架学习(一):简单DNN完成手势识别_第4张图片

三、模型测试

项目目录结构如下:
百度paddle框架学习(一):简单DNN完成手势识别_第5张图片
代码如下:

import matplotlib.pyplot as plt
import paddle.fluid.layers as layers
import Gesture_Recognition as GR
import paddle.fluid as fluid
import numpy as np


from PIL import Image
from Gesture_Recognition import  test_reader


with fluid.dygraph.guard():
    accs = []
    model_dict, _ = fluid.load_dygraph('MyDNN.pdparams')
    model = GR.MyDNN()
    model.load_dict(model_dict)     # 加载模型
    model.eval()    # 模型评估
    for batch_id, data in enumerate(test_reader()):
        images = np.array([x[0].reshape(3, 100, 100) for x in data], np.float32)
        labels = np.array([x[1] for x in data]).astype('int64')
        labels = labels[:, np.newaxis]
        image = fluid.dygraph.to_variable(images)
        label = fluid.dygraph.to_variable(labels)
        predict = model(image)
        acc = layers.accuracy(predict, label)  # 精度计算
        accs.append(acc.numpy()[0])
        avg_acc = np.mean(accs)
    print('平均acc:', avg_acc)


# 读取预测图象进行预测
def load_image(path):
    img = Image.open(path)
    img = img.resize((100, 100), Image.ANTIALIAS)
    img = np.array(img).astype('float32')
    img = img.transpose((2, 0, 1))
    img = img / 255.0
    # print(img.shape)
    return img


# 构建预测动态图
with fluid.dygraph.guard():
    infer_path = '手势.JPG'
    model = GR.MyDNN()
    model_dict, _ = fluid.load_dygraph('MyDNN.pdparams')
    model.load_dict(model_dict)  # 加载模型
    model.eval()  # 模型评估
    infer_img = load_image(infer_path)
    infer_img = np.array(infer_img).astype('float32')
    infer_img = infer_img[np.newaxis, :, :, :]
    infer_img = fluid.dygraph.to_variable(infer_img)
    result = model(infer_img)
    print('预测值:', np.argmax(result.numpy()))
    plt.imshow(Image.open('手势.JPG'))
    plt.show()

运行结果:
百度paddle框架学习(一):简单DNN完成手势识别_第6张图片

 

你可能感兴趣的:(百度paddle框架学习(一):简单DNN完成手势识别)