Given two words (beginWord and endWord), and a dictionary’s word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,Given:
beginWord = “hit”
endWord = “cog”
wordList = [“hot”,”dot”,”dog”,”lot”,”log”]
As one shortest transformation is “hit” -> “hot” -> “dot” -> “dog” -> “cog”,
return its length 5.Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
要把这题转化成图论的问题,下述思路构建图:
1.beginWord、endWord、wordList里面的词作为图中的节点。
2.以确定这些节点是否可达:如果变换一个字符能够到另一个单词则说明可达
3.对图进行广度优先搜索,找出起点到终点的长度。
这是我最开始的思路,并且实现了,但是遇到了一个问题,就是 当wordList中单词太多则图的规模就会变得很大,最终就会超时(Time Limit Exceeded),这里也贴出超时代码吧:
class Solution {
private:
bool isConnect(const string &a, const string&b)
{//判断两个单词是否可达关系
int count = 0;
for (int i = 0; i < a.size(); i++)
{
if (a[i] != b[i])
count++;
if (count > 1)
return false;
}
if (count == 1)//只有一个字符不同
return true;
else
return false;
}
void buildMap(vector<vector<int>>&wordMap, map<string,int>wordTable)
{
int mapSize = wordTable.size();
for (auto it1 = wordTable.begin(); it1 != wordTable.end(); it1++)
{
for (auto it2 = it1; it2 != wordTable.end(); it2++)
{
if (isConnect(it1->first, it2->first))
{
//初始化邻接矩阵(1-可达 0-不可达)
wordMap[it1->second][it2->second] = 1;
wordMap[it2->second][it1->second] = 1;
}
}
}
}
int BFS(vector<vector<int>>&wordMap, string start, string end, map<string, int>wordTable)
{
vector<bool>visit(wordTable.size(), false);//访问表
queue<int>q;
queue<int>d;//记录距离distance的辅助队列
q.push(wordTable[start]);
d.push(1);
visit[wordTable[start]] = true;
while (!q.empty())
{
int t = d.front();
int i = q.front();
d.pop();
q.pop();
if (i == wordTable[end])//找到终点
{
return t;
}
for (int j = 0; j < wordMap.size(); j++)
{
if (!visit[j] && wordMap[i][j] == 1)
{
visit[j] = true;
q.push(j);
d.push(t + 1);
}
}
}//end while
return 0;
}
public:
int ladderLength(string beginWord, string endWord, unordered_set<string>& wordList) {
map<string, int>wordTable;//单词索引表
wordTable[beginWord] = 0;
wordTable[endWord] = 1;
auto it = wordList.begin();
int index = 2;
for (; it != wordList.end(); it++)//
{
if (wordTable.find(*it)==wordTable.end())
wordTable[*it] = index++;//建立一个单词-索引表方便建图
}
int size = wordTable.size();
vector<vector<int>> wordMap(size,vector<int>(size,0));//初始化邻接矩阵
buildMap(wordMap, wordTable);//建图
return BFS(wordMap, beginWord, endWord, wordTable);
//return 0;
}
};
其实不用把整个图建出来,可以走一步看一步,也就是说:
当访问到节点A时,可以先求出所有跟节点A临接且未被访问的节点入队,然后按照BFS的思路做即可。
但是,修改后的代码依然是超时,后来找原因发现是我在“判断两个节点是否临接”这个步骤中使用的算法效率太低,对比网上的思路:
我的方法是:把当前节点的单词current和wordList里面的所有词比较,不相同的字符的个数为1的时候return true,否则return false。这样做的缺点是,不论如何都要遍历完整个wordList,查找时间复杂度是 O(n) 。
网上一种思路是:替换当前节点的单词current每个字符(从a~z),然后看看替换过后的单词是否在单词表中,这里我不理解的是,由于我们是用unordered_set来保存单词表,虽然最坏情况下的时间复杂度会到 O(n) ,但一般情况下是可以在常数时间 O(1) 下访问的,因此使用unordered_set::find的时间复杂度是要低于线性时间复杂度的,这样就提高了效率。
class Solution {
private:
void buildMap(string end,vector<string>&connect,unordered_set<string>&visit,string& current,const unordered_set<string>&wordList)
{
connect.clear();
string cur = current;
/*
超时:时间复杂度O(n)
for(auto i=wordList.begin();i!=wordList.end();i++)
{
if(visit.find(*i)!=visit.end())
continue;
if(isConnect(cur,*i))
connect.push_back(*i);
}
*/
#if 1
for (int i = 0; i < cur.size(); i++)
{
char t = cur[i];
for (char c = 'a'; c < 'z'; c++)
{
if (c == t)
{
continue;
}
cur[i] = c;
if ((cur == end || wordList.find(cur) != wordList.end()) && (visit.find(cur) == visit.end()))
{
connect.push_back(cur);
}
}
cur[i]=t;
}
#endif
}
int BFS(string beginWord, string endWord, unordered_set<string>& wordList)
{
queue<string>q;
queue<int>d;//路径distance的辅助队列
unordered_set<string>visit;
vector<string>connect;
q.push(beginWord);
d.push(1);
while (!q.empty())
{
string current = q.front();
int tmpDist = d.front();
q.pop();
d.pop();
buildMap(endWord,connect, visit, current, wordList);//获取临接单词
if (current == endWord)//找到终点
{
return tmpDist;
}
for (int i = 0; i < connect.size(); i++)
{
if (visit.find(connect[i]) == visit.end())//未被访问
{
visit.insert(connect[i]);
q.push(connect[i]);
d.push(tmpDist + 1);
}
}
}
return 0;//没有找到路径
}
public:
int ladderLength(string beginWord, string endWord, unordered_set<string>& wordList) {
int res= BFS(beginWord, endWord, wordList);
return res;
}
};
unordered_set::find时间复杂度
http://www.cplusplus.com/reference/unordered_set/unordered_set/find/
Complexity
Average case: constant.
Worst case: linear in container size.