- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- 智驾技术全链条解析
TrustZone_
智驾智驾
智驾技术全链条解析(2025年最新版)智驾技术涵盖从环境感知到车辆控制的完整闭环,涉及硬件、算法、数据与系统集成等多个领域。以下结合行业最新进展(截至2025年3月)进行深度拆解:一、感知技术:汽车的“感官系统”多传感器融合架构•核心传感器类型:◦激光雷达:华为ADS3.0采用200米探测距离的激光雷达,实现高精度三维建模,但成本较高(约2500元/颗);◦毫米波雷达:用于穿透雨雾探测,比亚迪天神
- AUTOSAR从入门到精通-4D毫米雷达波
格图素书
人工智能
目录前言几个高频面试题目4D毫米波雷达会取代激光雷达吗?3D与4D毫米波雷达对比毫米波雷达行业发展历程算法原理几个相关概念雷达毫米波雷达长波vs短波与传统毫米波雷达和激光雷达对比与传统毫米波雷达对比与激光雷达对比与摄像头对比毫米波雷达工作原理毫米波雷达主要应用波段毫米波构成主要功能以及实现方式什么是4D毫米波?4D毫米波雷达市场规模4D毫米波雷达厂商4D毫米波雷达探测性能4D毫米波雷达算法能力现状
- 华为 ADS 3.0 与特斯拉 FSD V12:自动驾驶技术的巅峰对决与未来展望
中科宁图
华为自动驾驶人工智能
一、华为ADS3.0:多传感器融合的卓越代表(一)硬件与技术特色华为ADS3.0智能驾驶系统构建了全面的全息感知体系,融合激光雷达、高清摄像头、毫米波雷达、超声波传感器等多种设备。激光雷达实现环境三维重建和精确测距,在恶劣条件下仍能准确捕捉物体信息;高分辨率摄像头获取视觉信息;毫米波雷达在极端天气下强化对移动物体探测;超声波传感器辅助近距离障碍物检测。GOD网络融合处理多传感器数据,为决策提供坚实
- 自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例
空间机器人
自动驾驶人工智能机器学习
自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例1.引言自动驾驶系统依赖于传感器来感知周围环境,并基于此做出实时决策。不同类型的传感器各自有不同的特性,能够应对不同的场景和环境条件。摄像头、毫米波雷达、超声波雷达的组合能够在视觉、距离、速度和障碍物感知等方面提供全面的支持。本章节将详细介绍“8摄像头+1毫米波雷达+12超声波雷达”配置的设计思路、优势、各传感器的参数,以
- 无人机的任务载荷指的是什么?看了这篇文你就明白了!!!
云卓SKYDROID
无人机高科技云卓科技无人机载重
传感器载荷包括但不限于:摄像头和光学传感器:如高分辨率摄像头、红外线航空摄影仪、光学/红外成像设备等,用于精准地捕捉图像和数据信息。雷达传感器:如毫米波雷达、合成孔径雷达(SAR)等,能够在夜间和恶劣气候条件下工作,穿透云层、雾和战场遮蔽,进行大范围成像。激光雷达(LiDAR):利用激光束进行探测与测量,不仅可以探测到簇叶下的目标,还可以对目标进行分类,为地面部队提供精确目标信息。多光谱相机:用于
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 科技快讯 | OpenAI首次向免费用户开放推理模型;特朗普与黄仁勋会面;雷军回应“10后小学生深情表白小米SU7”
最新科技快讯
科技
不用开口:谷歌AI帮你致电商家,价格、预约一键搞定谷歌在1月30日推出SearchLabs中的“AskforMe”实验性功能,用户可利用AI代替自己致电商家咨询价格和服务。该功能已与美汽车修理厂和美甲沙龙店合作,用户需加入SearchLabs并搜索相关短语进行测试。功能使用部分预订餐厅技术,目前处于测试阶段。我国光子毫米波雷达技术取得突破性进展,为6G技术应用奠定基础1月27日,据新华社报道,南开
- Python实现复原毫米波雷达呼吸波形的示例
go5463158465
python算法机器学习python开发语言
以下是一个使用Python实现复原毫米波雷达呼吸波形的示例,该示例将涉及模型算法在重建损失和KL(Kullback-Leibler)损失之间的平衡问题。我们将使用深度学习中的变分自编码器(VAE)作为模型来进行呼吸波形的复原,因为VAE可以很好地处理重建和潜在空间分布的问题。步骤概述数据准备:生成或加载毫米波雷达的呼吸波形数据。定义VAE模型:包括编码器和解码器。定义损失函数:结合重建损失和KL损
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- 2-93 基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真
'Matlab学习与应用
matlab工程应用matlab无人机开发语言毫米波高度计雷达仿真频率调制连续波FMCW
基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真,不考虑环境杂波和收发信号隔离泄漏。通过考虑雷达天线、波束形成、信号传播、回波接收等环节影响。建立FMCW毫米波雷达系统的数学模型,评估无人机在不同高度下的高度测量性能。程序已调通,可直接运行。下载源程序请点链接:2-93基于matlab的无人机FMCW(频率调制连续波)毫米波高度计雷达仿真
- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- 2021年汽车传感器行业研究报告
行研君.嵇睿麒
自动驾驶其他
核心观点:自动驾驶加速渗透,推动汽车传感器市场的高速增长。传感器是自动驾驶的关键,当前主流自动驾驶传感器主要包括毫米波雷达、车载摄像头以及超声波雷达。2020年国内L2级别自动驾驶的渗透率已近15%。车企相继推出具备L3功能的自动驾驶车型。随着自动驾驶等级的提高,对传感器的数量和质量也提出了更高的要求,L2级自动驾驶传感器数量约为6个,L3约为13个,未来L5要达到30个以上,相应带动汽车传感器市
- 智能汽车「利好」数据服务,特斯拉/英伟达/大众都在布局
高工智能汽车
自动驾驶
硬件预埋,正在推动智能驾驶行业进入数据驱动迭代周期。今年,英伟达在Orin进入规模上量阶段的同时,推出了DriveMap,基于精确测绘数据与匿名众包数据相结合,提供厘米级的定位精度。后者,由搭载英伟达Hyperion架构的车辆提供数据众包,包括来自摄像头、激光雷达和毫米波雷达的数据。所有这些数据,从车端不断上传到云端。然后,加载到英伟达的Omniverse平台,后者是一个为虚拟仿真和实时物理精确模
- 智能汽车行业产业研究报告:毫米波雷达优势明显,核心壁垒是芯片、天线阵列、波形设计
人工智能学派
汽车
今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:毫米波雷达优势明显,核心壁垒是芯片、天线阵列、波形设计》。(报告出品方:国泰君安证券)报告共计:67页毫米波雷达被广泛的应用在车载感知识别中毫米波波长短、频段宽,比较容易实现窄波束,雷达分辨率高,不易受干扰。波长介于1~10mm的电磁波,频率大致范围是30GHZ~300GH2。毫米波雷达是测量被测物体相对距离、相对速度、方位的高精度
- 智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助
人工智能学派
自动驾驶人工智能机器学习
今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助》。(报告出品方:开源证券)报告共计:43页视觉感知最佳辅助——4D成像毫米波雷达感知是自动驾驶的首要环节,高性能传感器必不可少感知环节负责对侦测、识别、跟踪目标,是自动驾驶实现的第一步。自动驾驶的实现,首先要能够准确理解驾驶环境信息,需要对交通主体、交通信号、环境物体等信息进行有效捕捉,根据实时
- 华为问界M9:全方位自动驾驶技术解决方案
华西建筑关联专业公司 华鲲智慧
自动驾驶人工智能机器学习
华为问界M9的自动驾驶技术采用了多种方法来提高驾驶的便利性和安全性。以下是一些关键技术:智能感知系统:问界M9配备了先进的传感器,包括高清摄像头、毫米波雷达、超声波雷达等,这些传感器可以实时监测车辆周围的环境,并自动识别行人、车辆、交通信号等,为自动驾驶提供更加精准的数据支持。这种全场景的智能感知能够实现全天候、全路况的智能感知,提高驾驶的便利性和安全性。自动驾驶辅助系统:华为自主研发的Drive
- 4D毫米波雷达
sangba2019
#毫米波雷达自动驾驶fpga开发毫米波雷达4D毫米波雷达
主流雷达供应商的4D成像雷达方案梳理csdn链接德国大陆集团(以下简称大陆)深耕车载毫米波雷达数十年,自2016年推出划时代的ARS4XX77GHz毫米波前向雷达和BSD3XX24GHz毫米波盲区检测雷达,目前前向雷达和角雷达产品已更迭至第五代,客户包括了戴姆勒、宝马、大众、丰田等知名主机厂。2020年大陆推出了4D成像雷达ARS540,采用4颗射频芯片级联的方式,实现12发射通道,16接收通道高
- 2.1.3 毫米波雷达
人工智能
毫米波雷达更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git毫米波雷达(RADAR),和激光雷达的原理类似,是工作在毫米波波段(millimeterwave)探测的雷达。通常毫米波是指30~300GHz频域(波长为1~10mm)的。毫米波的波长介于微波和厘米波之间,因此毫米波雷达兼有微波雷达和光电雷达的一些优点。同厘米波导
- 2.1.2 激光雷达
人工智能
激光雷达更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git激光雷达是自动驾驶领域非常依赖的传感器,越来越多的自动驾驶公司看好激光雷达的应用前景。激光雷达是实现更高级别自动驾驶(L3级别以上),以及更高安全性的良好途径,相比于毫米波雷达,激光雷达的分辨率更高、稳定性更好、三维数据也更可靠。一、原理激光雷达(LightDete
- 坐标变换(2)—不同坐标系下的变换
lewif5231
如下图所示,在自动驾驶车辆上会存在大量冗余的传感器,例如轮速传感器、激光雷达,毫米波雷达,摄像头,超声波雷达,GPS,IMU等。不同传感器对同一物体的测量原始结果都是在自身坐标下,所以首先我们需要对多传感器就行标定(即获得不同坐标系之间的变换关系,多传感器的标定是个非常复杂且困难的问题,这里先不介绍),将所有传感器的输出统一到一个坐标系下。图1.自动驾驶车辆上的多传感器本文主要介绍不同坐标系之间变
- TI 毫米波雷达开发系列之mmWave Studio 和 Visuiallizer 的异同点&雷达影响因素分析
雷达爆破手
毫米波雷达mmWaveRadar毫米波雷达AWR/IWR系列
TI毫米波雷达开发之mmWaveStudio和Visuiallizer的异同点引入整个雷达系统研究的目标分析影响这个目标的因素硬件影响因素——雷达系统的硬件结构(主要是雷达收发机)AWR1642芯片硬件系统组成MSS和DSS概述MSS和DSS分工BSS的分工AWR1642组成及分工总结雷达收发机对雷达检测效果的影响影响雷达测距效果的因素测速及其他指标的影响三种调参方式的对比软件影响因素——信号处理
- TI毫米波雷达开发——High Accuracy Demo 串口数据接收及TLV协议解析 matlab 源码
雷达爆破手
matlab开发语言
TI毫米波雷达开发——串口数据接收及TLV协议解析matlab源码前置基础源代码功能说明功能演示视频文件结构01.bin/02.binParseData.mread_file_and_plot_object_location.mread_serial_port_and_plot_object_location.m函数解析configureSport(comportSnum)readUartCall
- 电动汽车雷达技术概述 —— FMCW干扰问题
初心不忘产学研
自动驾驶汽车嵌入式硬件电动汽车传感器雷达FMCW毫米波雷达雷达技术
一、电动汽车上有多少种传感器?智能电动汽车(包括自动驾驶汽车)集成了大量的传感器来实现高级驾驶辅助系统(ADAS)、自动驾驶功能以及车辆状态监测等功能。以下是一份相对全面的智能电动汽车中可能使用到的传感器列表:环境感知传感器:激光雷达(LiDAR):提供高精度三维点云数据,用于构建周围环境模型。毫米波雷达(MMWRadar):长距离和短距离雷达,检测与前方、后方及侧面物体的距离、速度和角度信息。视
- 毫米波雷达在汽车领域的原理、优势和未来趋势
马上到我碗里来
自动驾驶毫米波雷达无人驾驶
1毫米波雷达的原理汽车引入毫米波雷达最初主要是为了实现盲点监测和定距巡航。毫米波实质上是电磁波,其频段位于无线电和可见光、红外线之间,频率范围为10GHz-200GHz。工作原理类似一般雷达,通过发射无线电波并接收回波,利用障碍物反射波的时间差确定障碍物距离,通过反射波的频率偏移确定相对速度。2毫米波雷达未被抛弃的原因2.1天气原因激光雷达在极端天气下性能受限,而毫米波雷达能够穿透雾、雨、雪等,适
- 2023-02-24
醉爱琳儿
A股2月24日纪要大盘上涨的空间太小。静待靴子落地吧。阅读蕴藏着无尽可能,有益于明理、增信、崇德、力行,让人生绽放光彩。朋友们,早上好,今天是2月24日星期五,周四大小指数冲高回落,上证指数以绿盘报收,创业板指数小幅收涨。两市合计成交8079亿元,较上日略微有些增加。盘面上盘面上看,光伏、汽车、券商、农业、煤炭等板块走强,银行、地产、有色等板块上扬;软件、酿酒、医药等板块下挫;毫米波雷达、一体压铸
- 自动驾驶中的传感器
huangyi_200502
自动驾驶
目录摄像头激光雷达毫米波雷达惯性传感器(IMU)超声波雷达声明摄像头对比Radar、Lidar、Sonar来讲,Camera最接近人眼识别原理,在自动驾驶传感器中担任重要角色。摄像头可以拥有较广的视场角、较大的分辨率,还可以提供颜色和纹理等信息。这些信息对于实现自动驾驶功能是存在很大帮助的。摄像头是将光学组件获得的光信号,投射到图像传感器上,完成由光信号到电信号的转换,然后再转换为数字图像信号,最
- 自动驾驶模拟如此“吃”算力,你的工作站扛得住吗?
戴尔科技
自动驾驶人工智能机器学习
今年的亚运会让杭州“火出了圈”,除了各种高度自动化的场馆设施之外,无人物流配送车和自动驾驶公交车也开始正式运营,给市政交通增添了一分科幻色彩。杭州的自动驾驶公交车配备了3个激光雷达、4个毫米波雷达和5个摄像头,300米范围内的障碍物都能被识别和准确避开,精度达到厘米级。自动驾驶巴士通过在沿线全路段部署高清相机、雷达等智能感知设备,实现路网全息感知,并依托车路协同技术,实现了车与路的智慧互联,有效提
- 基于Ti-AWR2944雷达开发板的DDM发射与处理实践
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分经验分享车载毫米波雷达FMCW雷达DDMA发射模式Ti-AWR2944
说明我在之前的博文中有说过如下观点:MIMO体制下,有两个核心的问题需要解决:一是天线如何排布;二是天线如何发射。天线的排布问题主要涉及到测角,它与射频面板尺寸要求、单天线尺寸、最大无模糊测角范围、角度分辨率以及测角算法等有关,关于角度测量我之前有过一篇博文:车载毫米波雷达DOA估计综述-CSDN博客。天线的发射问题主要是考虑到正交性:如何在后端将各个收发通道给分离出来,现阶段有TDM、BPM、F
- PMCW体制雷达系列文章(2) - PMCW雷达与CDM
墨@#≯
自动驾驶全栈工程师的毫米波雷达部分PMCW雷达经验分享自动驾驶
说明多发多收(MIMO)体制下关于天线阵列有两个核心的问题:一是天线阵列怎么排布;二是这么多发射通道如何发射。这两点不管对于FMCW雷达还是PMCW雷达都同样适用。关于雷达的发射问题,我之前写过一篇博文:车载毫米波雷达MIMO阵列的天线发射问题-CSDN博客,那篇博文及其参考文献其实已经把雷达的发射问题(现有的发射模式)基本囊括了。PMCW体制下我们一般基于CDM来实现多个发射通道的同时发射。本文
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found