TensorFlow2.0 自定义层、自定义模块、自定义模型构建

目录

头文件

1、加载数据集

2、自定义层(Dense层)

3、自定义模块(设定两个Dense为一个模块)

4、自定深度神经网络模型

5、训练深度神经网络模型


 

头文件

import numpy as np
import tensorflow as tf
import datetime
import os

from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D

1、加载数据集

def load_dataset():
    mnist = np.load("mnist.npz")
    return mnist['x_train']/255.0, mnist['y_train'], mnist['x_test']/255.0, mnist['y_test']

x_train, y_train, x_test, y_test = load_dataset()

print (np.shape(x_train))

x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

2、自定义层(Dense层)

class MyDense(tf.keras.layers.Layer):
    def __init__(self, units=32, **kwargs):
        super(MyDense, self).__init__(**kwargs)
        self.units = units

    def build(self, input_shape):
        super(MyDense, self).build(input_shape) # 相当于设置self.build = True
        self.w = self.add_weight(shape=(input_shape[-1], self.units),
                                 initializer='random_normal',
                                 trainable=True,
                                 name='w')
        self.b = self.add_weight(shape=(self.units, ),
                                 initializer='random_normal',
                                 trainable=True,
                                 name='b')

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

    def get_config(self):
        config = super(MyDense, self).get_config()
        config.update({'units': self.units})
        return config

3、自定义模块(设定两个Dense为一个模块)

class MyBlock(tf.keras.Model):
    def __init__(self, units=[32, 32]):
        super(MyBlock, self).__init__(name='')

        self.dense1 = MyDense(units[0])
        self.dense2 = MyDense(units[1])

    def call(self, input_tensor):
        x = self.dense1(input_tensor)
        return self.dense2(x)

4、自定深度神经网络模型

包括卷积层,最大池化层,MyBlock,以及输出层

class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
        super(MyModel, self).__init__()

        self.conv1 = Conv2D(4, 3, activation='relu')
        self.pool1 = MaxPool2D(pool_size=(2, 2))
        self.conv2 = Conv2D(6, 3, activation='relu')
        self.pool2 = MaxPool2D(pool_size=(2, 2))
        self.flatten = Flatten()
        self.block = MyBlock(units=[60, 40])
        self.d = Dense(10)

    @tf.function(input_signature=[tf.TensorSpec([None, 28, 28, 1], tf.float32, name='inputs')])
    def call(self, input_tensor):
        x = self.conv1(input_tensor)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.flatten(x)
        x = self.block(x)
        return self.d(x)

5、训练深度神经网络模型

def training_model():
    Epochs = 10
    model = MyModel()
    loss_obj = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    optimizer = tf.keras.optimizers.Adam(0.001)

    train_loss = tf.keras.metrics.Mean(name='train_loss')
    test_loss = tf.keras.metrics.Mean(name='test_loss')
    test_acc = tf.keras.metrics.SparseCategoricalAccuracy(name='test_acc')

    def train_step(images, labels):
        with tf.GradientTape() as tape:
            logits = model(images)
            loss = loss_obj(labels, logits)

        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        train_loss(loss)

    def test_step(images, labels):
        logits = model(images)
        loss = loss_obj(labels, logits)

        test_loss(loss)
        test_acc(labels, logits)

    for epoch in range(Epochs):
        train_loss.reset_states()
        test_loss.reset_states()
        test_acc.reset_states()

        for images, labels in train_ds:
            train_step(images, labels)

        for images, labels in test_ds:
            test_step(images, labels)


        tmp = 'Epoch {}, train_loss: {}, test_loss: {}, test_acc: {}'
        print (tmp.format(epoch+1, train_loss.result(), test_loss.result(), test_acc.result()))


training_model()

实验结果

Epoch 1, train_loss: 0.28127846121788025, test_loss: 0.11484793573617935, test_acc: 0.963699996471405
Epoch 2, train_loss: 0.11530549079179764, test_loss: 0.08538637310266495, test_acc: 0.974399983882904
Epoch 3, train_loss: 0.09448453783988953, test_loss: 0.08153647184371948, test_acc: 0.9735000133514404
Epoch 4, train_loss: 0.08528731763362885, test_loss: 0.0694243535399437, test_acc: 0.9779000282287598
Epoch 5, train_loss: 0.07687702775001526, test_loss: 0.06510015577077866, test_acc: 0.9782000184059143
Epoch 6, train_loss: 0.07208435237407684, test_loss: 0.07370095700025558, test_acc: 0.9765999913215637
Epoch 7, train_loss: 0.06807399541139603, test_loss: 0.060320284217596054, test_acc: 0.98089998960495
Epoch 8, train_loss: 0.06528966128826141, test_loss: 0.06324119865894318, test_acc: 0.9799000024795532
Epoch 9, train_loss: 0.061740703880786896, test_loss: 0.06062839925289154, test_acc: 0.9799000024795532
Epoch 10, train_loss: 0.06004393473267555, test_loss: 0.05968930572271347, test_acc: 0.9799000024795532

 

你可能感兴趣的:(TensorFlow)