- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- 纳米尺度仿真软件:Quantum Espresso_(21).并行计算与性能优化
kkchenjj
分子动力学2性能优化模拟仿真分子动力学仿真模拟
并行计算与性能优化在纳米尺度仿真中,计算资源的需求往往非常庞大。为了提高计算效率和缩短计算时间,并行计算和性能优化成为不可或缺的技术手段。QuantumEspresso作为一个开源的量子力学仿真软件,提供了多种并行计算的机制和性能优化的方法。本节将详细介绍如何在QuantumEspresso中实现并行计算和性能优化,以提升仿真任务的效率。并行计算的基本概念并行计算是指同时使用多个计算资源(如多核处
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- AI人工智能深度学习算法:在量子计算中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着科技的不断发展,人工智能和量子计算成为了当今世界的热门话题。人工智能的深度学习算法在处理大规模数据和复杂任务方面取得了显著的成果,而量子计算则具有强大的并行计算能力和高效的信息处理能力。将人工智能与量子计算相结合,为解决一些具有挑战性的问题提供了新的思路和方法。本文将探讨人工智能深度学习算法在量子计算中的应用,包括其背景、意义和应用场景。2.核心概念与联系在人工智能中,深度学习是一
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 从图形处理到通用计算的进化之路
绿算技术
GPU架构介绍科技gpu算力
图形处理单元,作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算、游戏娱乐等领域。本文将深入探讨GPU架构的演变历程、核心组件以及其在不同应用场景中的优势。GPU架构的演变:从固定功能到可编程流水线早期的GPU采用固定功能流水线架构,专为图形渲染任务而设计。这种架构将图形渲染流程划分为一系列固定的阶段,例如顶点处理、光栅化、纹
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- 在MATLAB中进行并行计算和GPU加速?
琛哥的程序
网络服务器人工智能
在MATLAB中进行并行计算和GPU加速是提升计算性能和处理大规模数据集的重要手段。下面将详细介绍如何在MATLAB中实现这些技术。一、并行计算MATLAB提供了并行计算的功能,可以充分利用多核处理器和分布式计算资源,显著提高代码执行效率。在MATLAB中进行并行计算的主要工具有ParallelComputingToolbox和parfor循环。ParallelComputingToolboxPa
- 深入理解 GPU 渲染加速与合成层(Composite Layers)
一、前端视角下的GPU加速1.CPU与GPU的协作模式在前端渲染流程中,GPU加速通过硬件并行计算能力显著提升图形处理效率。传统浏览器渲染依赖CPU处理DOM解析、样式计算和布局,但CPU的串行处理模式在处理大规模图形数据(如复杂动画、3D变换、高清图像)时易成为性能瓶颈。GPU的介入解决了这一核心矛盾:流处理器核心并行计算:GPU拥有数千个小型核心,可同时处理大量像素数据,例如同时对元素的所有像
- 信息技术基础专有名词和计算机硬件学习笔记
learning-striving
信息技术学习笔记信息技术计算机硬件
信息技术常见专有名词信息技术基础课程中常见的专有名词英文缩写或简称及其详细含义,按领域分类整理:硬件与存储CPU(CentralProcessingUnit)中央处理器,负责执行计算机指令和处理数据。GPU(GraphicsProcessingUnit)图形处理器,专用于处理图形和并行计算。RAM(RandomAccessMemory)随机存取存储器,临时存储运行中的程序和数据。ROM(Read-
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 分子动力学仿真软件:ESPResSo_(14).优化与性能提升
kkchenjj
分子动力学2模拟仿真仿真模拟分子动力学
优化与性能提升在分子动力学仿真中,性能优化是一个至关重要的环节。高效的仿真可以显著减少计算时间,提高研究效率。本节将详细介绍如何在ESPResSo中进行性能优化,包括并行计算、算法优化、内存管理等方面的内容。并行计算并行计算是提高分子动力学仿真性能的有效手段。ESPResSo支持多种并行计算模式,包括多线程(OpenMP)和分布式计算(MPI)。合理利用这些并行计算模式可以显著提升仿真速度。Ope
- 使用Python的 multiprocessing 模块实现多进程并行计算(上完整代码)
小码小李
开发语言python数据库
使用Python的multiprocessing模块实现多进程并行计算的较为详细复杂的示例代码,用于计算一个较大范围内数字的平方,并将结果汇总。以下是一个更具体、复杂且详尽的多进程并行计算代码示例,用于分析多个大型文本文件中单词出现的频率:importmultiprocessingimporttimeimportrefromcollectionsimportCounter#函数用于读取单个文件内容
- 【Python】multiprocessing 模块:多进程并行计算
彬彬侠
Python基础multiprocessing多进程ProcessPoolManagerLockpython
Pythonmultiprocessing模块Python的multiprocessing模块用于多进程并行计算,可以充分利用多核CPU进行任务加速,突破PythonGIL(全局解释器锁)的限制,提高程序执行效率。1.为什么使用multiprocessing?Python默认的threading模块使用线程进行并发,但由于GIL(全局解释器锁)的存在,多线程无法真正实现CPU级别的并行计算,适用于
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- 问deepseek: openfoam并行分区,数据交换逻辑解释
weixin_42849849
CFD/OpenFOAM数值计算/数值优化DeepSeek
在OpenFOAM中,并行计算通过将计算域分解为多个子域来实现,每个子域由一个独立的进程处理。并行分区和数据交换是确保计算正确性和效率的关键部分。以下是并行分区和数据交换逻辑的详细解释:1.并行分区并行分区是将计算域分解为多个子域的过程,每个子域由一个独立的MPI进程处理。OpenFOAM提供了多种分区工具,如decomposePar,支持以下分区方法:简单分区:将域均匀划分为若干块。层次分区:递
- WebGPU 为什么会取代 WebGL,看看 WebGPU 都做了啥?
贝格前端工场
webglUI设计大数据
WebGPU被普遍认为是WebGL的继任者,并有望在未来逐步取代WebGL,这一趋势主要由以下技术、生态和行业因素推动,本文带着大家看WebGPU针对WebGL提升了啥,改进了啥。1.技术层面的必然性(1)硬件能力的演进需求现代GPU功能支持:WebGL基于OpenGLES(设计于2000年代初),无法利用现代GPU的并行计算、光线追踪、网格着色器等高级功能。WebGPU直接对接Vulkan/Me
- Java多线程与并行计算:深入剖析Java线程,线程池,以及利用Java进行并行计算的策略
哎 你看
Javajava开发语言线程并行并发
一、Java线程概述线程基础概念:线程是操作系统调度的最小单元,它是进程的一部分,每个线程都有自己的程序计数器、栈和局部变量。线程之间共享进程的堆和方法区。Java线程创建和启动:在Java中主要有两种方式创建线程:继承Thread类:创建一个新class,继承自Thread类,然后重写run()方法,并在该方法中执行需要在该线程中运行的代码。最后创建该class的实例,并调用其start()方法
- 分子动力学仿真软件:GROMACS_(1).GROMACS基础知识
kkchenjj
分子动力学2仿真模拟模拟仿真分子动力学
GROMACS基础知识1.GROMACS简介GROMACS(GROningenMAchineforChemicalSimulations)是一款广泛用于分子动力学仿真的开源软件。它主要用于模拟蛋白质、脂质、核酸以及其他生物分子系统的动力学行为。GROMACS以其高效、灵活和强大的功能而闻名,支持大规模并行计算,适用于从小分子到复杂生物体系的多种应用场景。1.1GROMACS的历史和发展GROMAC
- MATLAB 脑电数据处理代码优化:从基础到并行计算的演变
自由的晚风
matlab算法人工智能脑机接口经验分享笔记SSVEP
文章目录前言版本1:基础的串行处理版本2:引入并行计算提高效率版本3:进一步优化的并行化处理总结前言在处理EEG(脑电图)数据时,我们常常需要对大量信号进行滤波、降噪等操作。随着数据规模的不断增大,传统的串行处理方法往往变得效率低下。为了提高计算速度,我们可以通过引入并行计算来大幅度提升处理效率。本文将通过三个版本的MATLAB代码演示如何优化EEG数据处理流程,从基础的串行处理到并行计算,再到进
- mySQL和Hive的区别
iijik55
面试学习路线阿里巴巴hivemysql大数据tomcat面试
SQL和HQL的区别整体1、存储位置:Hive在Hadoop上;Mysql将数据存储在设备或本地系统中;2、数据更新:Hive不支持数据的改写和添加,是在加载的时候就已经确定好了;数据库可以CRUD;3、索引:Hive无索引,每次扫描所有数据,底层是MR,并行计算,适用于大数据量;MySQL有索引,适合在线查询数据;4、执行:Hive底层是MapReduce;MySQL底层是执行引擎;5、可扩展性
- (7)学习编程---python多进程、多线程、协程
daydreamer5920
编程学习
多进程(Multiprocessing)概念多进程是指一个程序同时运行多个进程。每个进程都有自己的内存空间和资源,进程之间通过进程间通信(IPC)来共享数据。优点独立性:每个进程都有独立的内存空间,一个进程的崩溃不会影响其他进程。并行性:可以利用多核CPU的优势,实现真正的并行计算。缺点资源消耗:每个进程都有自己的内存空间,因此资源消耗较大。通信成本:进程间通信需要通过IPC,通信成本较高。多线程
- A800算力部署实战策略
智能计算研究中心
其他
内容概要《A800算力部署实战策略》聚焦于高性能计算集群的全生命周期管理,系统梳理从底层硬件选型到上层软件生态协同的关键技术路径。本书以A800芯片的并行计算特性为切入点,深入探讨算力密度与能效比之间的动态平衡机制,覆盖硬件拓扑优化、分布式任务调度、跨架构编译优化等核心环节。通过模块化设计思路,将复杂的部署流程拆解为可迭代实施的标准化操作单元,为不同规模的计算场景提供灵活适配方案。建议在规划初期建
- matlab spmd,matlab并行计算命令
其实我是老莫
matlabspmd
1.matlab仿真模型怎么并行计算以单台双核计算机为例。首先打开MATLAB命令窗口,输入matlabpoolopen就OK了。这样,就相当于将一台计算机的两个核心,当做两台机器用啦。接下来是编程序实现的方法。MATLAB并行计算的模式有几种?主要是两种:parfor模式和spmd模式。两种模式的应用都很简单。第一个中,parfor其实就是parallel+for简化而来,顾名思义啊,就是把原来
- 本地部署AI大模型之并行计算:什么是可重入互斥锁/递归锁
杰瑞学AI
DevopsComputerknowledge开发语言python软件工程性能优化
目录1.普通互斥锁的局限性2.可重入互斥锁的工作原理3.使用场景4.代码示例5.实现关键6.注意事项可重入互斥锁(ReentrantMutex,或称为递归锁)是一种特殊类型的互斥锁,允许同一线程多次获取同一把锁而不会导致死锁。以下是其核心要点:1.普通互斥锁的局限性普通互斥锁(Mutex)在同一个线程中只能被获取一次。若线程尝试重复获取已持有的锁,会导致自死锁(线程无限等待自己释放锁)。2.可重入
- 《深度解析DeepSeek-M8:量子经典融合,重塑计算能效格局》
程序猿阿伟
量子计算
在科技飞速发展的今天,量子计算与经典算法的融合成为了前沿领域的焦点。DeepSeek-M8的“量子神经网络混合架构”,宛如一把钥匙,开启了经典算法与量子计算协同推理的全新大门,为诸多复杂问题的解决提供了前所未有的思路。量子计算,基于量子力学的奇妙特性,如量子比特的叠加与纠缠,展现出了超越经典计算的潜力。量子比特能够同时处于多个状态,实现并行计算,这使得量子计算机在处理某些特定问题时,具备指数级加速
- Unity Job系统详解原理和基础应用处理大量物体位置
废嘉在线抓狂.
Unity
概述该脚本使用UnityJobSystem和BurstCompiler高效管理大量剑对象的位移计算与坐标更新。通过双缓冲技术实现无锁并行计算,适用于需要高性能批量处理Transform的场景。核心类SwordManager成员变量变量名类型说明swordPrefabGameObject剑对象预制体_deltaPositionsNativeArray每帧位移增量数据(临时内存分配)_position
- 分子动力学仿真软件:GROMACS_(12).并行计算与性能优化
kkchenjj
分子动力学2分子动力学仿真模拟模拟仿真性能优化
并行计算与性能优化并行计算的基本概念并行计算是指同时使用多个计算资源(如处理器、计算节点等)来执行计算任务,以提高计算效率和速度。在分子动力学仿真中,系统的规模往往非常大,涉及数百万甚至数十亿个原子的相互作用。因此,并行计算是提高仿真效率的关键技术之一。并行计算的类型并行计算主要分为以下几种类型:数据并行:将数据分割成多个部分,每部分由不同的计算资源处理。任务并行:将任务分解成多个子任务,每个子任
- 【Transformer优化】Transformer的局限在哪?
T-I-M
transformer深度学习人工智能
自2017年Transformer横空出世以来,它几乎重写了自然语言处理的规则。但当我们在享受其惊人的并行计算能力和表征能力时,是否真正理解了它的局限性?本文将深入探讨在复杂度之外被忽视的五大核心缺陷,并试图在数学维度揭示其本质。一、全局注意力的"诅咒":从**O(n²)**到O(n³)的计算困境自注意力机制的数学表达式:Attention(Q,K,V)=softmax(QK⊤dk)V\text{
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟