windows10+keras下的yolov3的快速使用及自己数据集的训练

文章写作初衷:

       由于本人用的电脑是win10操作系统,也带有gpu显卡。在研究车位识别过程中想使用yolov3作为训练模型。翻看安装yolo的过程中有看到 https://pjreddie.com/darknet/yolo/  这是linux安装yolo最详细的文档(如果大家使用的是linux强烈推荐该文档)。本来想在自己的win10系统上安装一个虚拟机并安装linux操作系统,但是后来在论坛中有人说是双系统,虚拟机的显卡是虚拟出来的,没法用cuda加速,只能作罢。于是搜索win10下如何安装yolov3,搜到一篇文章 https://zhuanlan.zhihu.com/p/35828626 ,由于yolo是由c/c++编写,win10需要安装配置Visual Studio进行yolo的配置修改和运行。但是自己电脑并没有配置相应的Visual Studio,也嫌麻烦不想安装。在迟疑之际忽然搜到有win10下keras版本的yolov3(由于之前电脑已经配置好了keras,再使用就显得方便很多。)。搜到很多的文章,但是有一篇无疑是最值得推荐的 Patrick_Lxc大神写的博客: https://blog.csdn.net/Patrick_Lxc/article/details/80615433。虽然大神写的已经够详细,但是自己在实现过程中也发现有几个不太好注意的地方,因为本人复现代码用了大半天,还是希望别人用更快的速度去实现yolo的使用和训练自己的模型。这也是写作文章的初衷。

一、环境要求

      tensorflow-gpu

      keras

      pycharm

二、快速使用

      1、下载yolov3代码:https://github.com/qqwweee/keras-yolo3 ,并解压缩之后用pycharm打开。

      2、下载权重:https://pjreddie.com/media/files/yolov3.weights并将权重放在keras-yolo3的文件夹下。如下图所示:

             windows10+keras下的yolov3的快速使用及自己数据集的训练_第1张图片

      3、执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。

             python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

      4、运行预测图像程序

             python yolo.py

             windows10+keras下的yolov3的快速使用及自己数据集的训练_第2张图片

            输入需要预测的图片路径即可,结果示例如下:

            windows10+keras下的yolov3的快速使用及自己数据集的训练_第3张图片

           这样就可以实现yolov3的快速使用了。

三、训练自己的数据集进行目标检测

          1、在工程下新建一个文件夹VOCdevkit,目录结构为VOCdevkit/VOC2007/,在下面就是新建几个默认名字的文件夹           Annotation,ImageSet(该目录还有三个文件需要建立),JPEGImages(把你所有的图片都复制到该目录里面,如下图),SegmentationClass,SegmentationObject。

           windows10+keras下的yolov3的快速使用及自己数据集的训练_第4张图片

           2、生成Annotation下的文件,安装工具labelImg。安装过程可参照:

                 https://blog.csdn.net/u012746060/article/details/81016993,结果如下图:

                 windows10+keras下的yolov3的快速使用及自己数据集的训练_第5张图片

            3、生成ImageSet/Main/4个文件。在VOC2007下新建一个python文件,复制如下代码         

import os
import random

trainval_percent = 0.2
train_percent = 0.8
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

                 运行代码之后,生成如下文件,VOC2007数据集制作完成。

                  windows10+keras下的yolov3的快速使用及自己数据集的训练_第6张图片

                4、生成yolo3所需的train.txt,val.txt,test.txt

                  生成的数据集不能供yolov3直接使用。需要运行voc_annotation.py ,classes以检测两个类为例(车和人腿),在voc_annotation.py需改你的数据集为:

                  

                运行之后,生成如下三个文件:

                 windows10+keras下的yolov3的快速使用及自己数据集的训练_第7张图片

                5、修改参数文件yolo3.cfg

                 打开yolo3.cfg文件。搜索yolo(共出现三次),每次按下图都要修改

                 windows10+keras下的yolov3的快速使用及自己数据集的训练_第8张图片

                  filter:3*(5+len(classes))

                  classes:你要训练的类别数(我这里是训练两类) 

                  random:原来是1,显存小改为0

                 6、修改model_data下的voc_classes.txt为自己训练的类别

                  windows10+keras下的yolov3的快速使用及自己数据集的训练_第9张图片

                7、 修改train.py代码(用下面代码直接替换原来的代码)

                 

"""
Retrain the YOLO model for your own dataset.
"""
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data


def _main():
    annotation_path = '2007_train.txt'
    log_dir = 'logs/000/'
    classes_path = 'model_data/voc_classes.txt'
    anchors_path = 'model_data/yolo_anchors.txt'
    class_names = get_classes(classes_path)
    anchors = get_anchors(anchors_path)
    input_shape = (416,416) # multiple of 32, hw
    model = create_model(input_shape, anchors, len(class_names) )
    train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)

def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    model.compile(optimizer='adam', loss={
        'yolo_loss': lambda y_true, y_pred: y_pred})
    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
    batch_size = 10
    val_split = 0.1
    with open(annotation_path) as f:
        lines = f.readlines()
    np.random.shuffle(lines)
    num_val = int(len(lines)*val_split)
    num_train = len(lines) - num_val
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
            steps_per_epoch=max(1, num_train//batch_size),
            validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
            validation_steps=max(1, num_val//batch_size),
            epochs=500,
            initial_epoch=0)
    model.save_weights(log_dir + 'trained_weights.h5')

def get_classes(classes_path):
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

def get_anchors(anchors_path):
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape(-1, 2)

def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    np.random.shuffle(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            i %= n
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)
            box_data.append(box)
            i += 1
        image_data = np.array(image_data)
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [image_data, *y_true], np.zeros(batch_size)

def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    if n==0 or batch_size<=0: return None
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)

if __name__ == '__main__':
    _main()

                   替换完成后,千万千万值得注意的是,因为程序中有logs/000/目录,你需要创建这样一个目录,这个目录的作用就是存放自己的数据集训练得到的模型。不然程序运行到最后会因为找不到该路径而发生错误。生成的模型trained_weights.h5如下:

                    

               8、修改yolo.py文件,如下将self这三行修改为各自对应的路径。

                    windows10+keras下的yolov3的快速使用及自己数据集的训练_第10张图片

                   运行python yolo.py,输入自己要检测的类的图片即可查看训练效果了。

                   windows10+keras下的yolov3的快速使用及自己数据集的训练_第11张图片

             

你可能感兴趣的:(深度学习)