二叉树,完全二叉树,满二叉树,二叉排序树,平衡二叉树,红黑树,B数,B-树,B+树,B*树(一)

二叉树

二叉树:二叉树是每个节点最多有两个子树的树结构;

是n(n>=0)个结点的有限集合,它或者是空树(n=0),或者是由一个根结点及两颗互不相交的、分别称为左子树和右子树的二叉树所组成。


完全二叉树

完全二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点;

树中所含的n个节点和满二叉树中编号为1至n的节点一一对应


满二叉树

满二叉树:除最后一层外,每一层上的所有结点都有两个子结点;满二叉树是一种特殊的完全二叉树;


二叉排序树(二叉搜索树)

二叉排序树:二叉树中,每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大。又叫二叉搜索树。

平衡二叉树

平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树。1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树。

平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态。

这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。但是频繁旋转会使插入和删除牺牲掉O(logN)左右的时间,不过相对二叉查找树来说,时间上稳定了很多。

红黑树rbtree 二叉排序树

map 就是采用红黑树存储的,红黑树(RB Tree)是平衡二叉树,其优点就是树到叶子节点深度一致,查找的效率也就一样,为logN.在实行查找,插入,删除的效率都一致,而当是全部静态数据时,没有太多优势,可能采用hash表各合适。

hash_map是一个hash table占用内存更多,查找效率高一些,但是hash的时间比较费时。

总 体来说,hash_map 查找速度会比map快,而且查找速度基本和数据数据量大小,属于常数级别;而map的查找速度是log(n)级别。并不一定常数就比log(n)小, hash还有hash函数的耗时,明白了吧,如果你考虑效率,特别是在元素达到一定数量级时,考虑考虑hash_map。但若你对内存使用特别严格,希望程序尽可能少消耗内存,那么一定要小心,hash_map可能会让你陷入尴尬,特别是当你的hash_map对象特别多时,你就更无法控制了,而且 hash_map的构造速度较慢。

现在知道如何选择了吗?权衡三个因素: 查找速度, 数据量, 内存使用。

 

trie树Double Array 字典查找树


Trie树既可用于一般的字典搜索,也可用于索引查找。
每个节点相当于DFA的一个状态,终止状态为查找结束。有序查找的过程相当于状态的不断转换
对于给定的一个字符串a1,a2,a3,...,an.则
采用TRIE树搜索经过n次搜索即可完成一次查找。不过好像还是没有B树的搜索效率高,B树搜索算法复杂度为logt(n+1/2).当t趋向大,搜索效率变得高效。怪不得DB2的访问内存设置为虚拟内存的一个PAGE大小,而且帧切换频率降低,无需经常的PAGE切换。

 

B树

       即二叉搜索树:

       1.所有非叶子结点至多拥有两个儿子(Left和Right);

       2.所有结点存储一个关键字;

       3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

       如:

       B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

       如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

       如:

    但B树在经过多次插入与删除后,有可能导致不同的结构:

   右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;      

       实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

 

B-树

       是一种多路搜索树(并不是二叉的):

       1.定义任意非叶子结点最多只有M个儿子;且M>2;

       2.根结点的儿子数为[2, M];

       3.除根结点以外的非叶子结点的儿子数为[M/2, M];

       4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

       5.非叶子结点的关键字个数=指向儿子的指针个数-1;

       6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

       7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

       8.所有叶子结点位于同一层;

       如:(M=3)

 

       B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

       1.关键字集合分布在整颗树中;

       2.任何一个关键字出现且只出现在一个结点中;

       3.搜索有可能在非叶子结点结束;

       4.其搜索性能等价于在关键字全集内做一次二分查找;

       5.自动层次控制;

       由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

       其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

       所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

       由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

 

 

B+树

       B+树是B-树的变体,也是一种多路搜索树:

       1.其定义基本与B-树同,除了:

       2.非叶子结点的子树指针与关键字个数相同;

       3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

       5.为所有叶子结点增加一个链指针;

       6.所有关键字都在叶子结点出现;

       如:(M=3)

 

   B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

       B+的特性:

       1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

       2.不可能在非叶子结点命中;

       3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

       4.更适合文件索引系统;

 

B*树

       是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

 

   B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

       B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

       B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

       所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

 

小结

       B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

       B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;

       所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

       B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

       B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;




你可能感兴趣的:(数据结构与算法)