- 今日无更新
我的昵称违规了
学校的一个会忙得昏天黑地。明天有自己的一个发表,还要准备PPT,根据原来的改改就好……这周真的是有点繁杂了,搞定之后连着四五月份要写两篇论文,再加上五月底的课程论文还有紧接着的文献综述,看样子要疯……现在梳理一下自己手里的锤子:转到Pytorch,使用AllenNLP了解Transformer、了解LSTM了解jieba等分词工具了解Gensim等NLP处理工具接下来要做的:基于AllenNLP搞
- Python中的自然语言处理和文本挖掘
api77
电商apiapipython自然语言处理easyui开发语言网络前端java
在Python中,自然语言处理(NLP)和文本挖掘通常涉及对文本数据进行清洗、转换、分析和提取有用信息的过程。Python有许多库和工具可以帮助我们完成这些任务,其中最常用的包括nltk(自然语言处理工具包)、spaCy、gensim、textblob和scikit-learn等。以下是一个简单的例子,展示了如何使用Python和nltk库进行基本的自然语言处理和文本挖掘。安装必要的库首先,确保你
- gensim 实现 TF-IDF
木下瞳
NLP大模型tf-idf人工智能
目录介绍代码介绍TF-IDF(TermFrequency-InverseDocumentFrequency)含义:TF(TermFrequency):词频,是指一个词语在当前文档中出现的次数。它衡量的是词语在文档内部的重要性,直观上讲,一个词语在文档中出现越频繁,表明它对该文档内容描述的贡献越大。IDF(InverseDocumentFrequency):逆文档频率,是一个词语在整个文档集合中的稀
- gensim 语言训练库 2018-10-26
Mr_Du_Biao
一、安装gensimpipinstallgensim二、使用这个训练库很厉害,里面封装很多机器学习的算法,是目前人工智能的主流应用库importjiebaimportgensimfromgensimimportcorporafromgensimimportmodelsfromgensimimportsimilaritiesl1=["你的名字是什么","你今年几岁了","你有多高你胸多大","你胸多
- gensim模型(1)——Word2Vec
qqqh777
Word2Vec模型介绍Gensim的Word2Vec模型且展示其在LeeEvaluationCorpus上的用法。importlogginglogging.basicConfig(format='%(asctims)s:%(levelname)s:%(message)s',level=logging.INFO)如果你错过了提示,Word2Vec是基于神经网络的广泛使用的算法,通常被称为"深度学习
- Gensim详细介绍和使用:一个Python文本建模库
Bigcrab__
Python库介绍和使用python
Gensim=“GenerateSimilar”一、安装二、文本预处理2.1中文语料处理2.2英文语料处理2.3BOW语料建立三、模型使用3.1word2vecThealgorithmsinGensim,suchasWord2Vec,FastText,LatentSemanticIndexing(LSI,LSA,LsiModel),LatentDirichletAllocation(LDA,Lda
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 调用Gensim库训练Word2Vec模型
风筝超冷
word2vecpython深度学习
一、前期工作:1.安装Gensim库pipinstallgensim2.安装chardet库pipinstallchardet3.对原始语料分词选择《人民的名义》的小说原文作为语料,先采用jieba进行分词importjiebaimportjieba.analyseimportchardetjieba.suggest_freq('沙瑞金',True)#加入一些词,使得jieba分词准确率更高jie
- Word2Vec ——gensim实战教程
王同学死磕技术
最近斯坦福的CS224N开课了,看了下课程介绍,去年google发表的Transformer以及最近特别火的ContextualWordEmbeddings都会在今年的课程中进行介绍。NLP领域确实是一个知识迭代特别快速的领域,每年都有新的知识冒出来。所以身处NLP领域的同学们要时刻保持住学习的状态啊。笔者又重新在B站上看了这门课程的第一二节课。这里是课程链接。前两节课的主要内容基本上围绕着词向量
- x86系统与arm64系统不兼容的linux服务器问题
stay_foolish12
python操作系统大数据
一键离线安装命令:pipinstall--no-index--find-links=/home/digital_package-rrequirements.txt--ignore-installed1cython2gensim:
- 中国文化之光:微博数据的探索与可视化分析
八块腹肌的小胖
python数据可视化数据挖掘
大家好,我是八块腹肌的小胖下面我们针对主题“中国文化”相关的微博数据进行爬取使用LDA、情感分析、情感演化、词云等可视化操作进行相关的展示1、导包第一步我们开始导包工作下面这段代码,首先,pandas被请来了,因为它是处理数据的高手,能把数据弄得井井有条。然后,gensim也加入了,它擅长于自然语言处理,就像是让数据说话的魔术师。接着,咱们用了simple_preprocess,这个就像是个文本切
- 基于大数据的B站数据分析系统的设计与实现
叫我:松哥
大数据信息可视化数据分析python数据挖掘网络爬虫
摘要:随着B站(哔哩哔哩网)在国内视频分享平台的崛起,用户规模和数据量不断增加。为了更好地理解和利用这些海量的B站数据,设计并实现了一套基于Python的B站数据分析系统。该系统采用了layui作为前端框架、Flask作为后端框架,以及Echarts作为可视化工具,数据库选择MySQL,使用gensim库进行LDA主题建模。在系统设计方面,前端使用layui框架进行开发,提供了用户友好的界面,支持
- 使用Gensim库对文本进行词袋、TF-IDF和n-gram方法向量化处理
Yuki_lsq
Gensim库简介机器学习算法需要使用向量化后的数据进行预测,对于文本数据来说,因为算法执行的是关于矩形的数学运算,这意味着我们必须将字符串转换为向量。从数学的角度看,向量是具有大小和方向的几何对象,不需过多地关注概念,只需将向量化看作一种将单词映射到数学空间的方法,同时保留其本身蕴含的信息。Gensim是世界上最大的NLP/信息检索Python库之一,兼具内存高效性和可扩展性。Gensim的可扩
- 用gensim快速打开词向量
62ba53cbc93c
gensim是一个方便的nlp工具,特别是用来导入词向量,这里简单记录一下gensim导入词向量的方法importgensimw2v=gensim.models.KeyedVectors.load_word2vec_format("small_embedding.txt")print(w2v['a'])gensim导入词向量需要词向量文件的首行是:所有的单词数词向量的维度如果不是这个格式,需要做额
- flair.embeddings 对句子进行向量
图灵与对话
算法
importnumpyasnpimportpandasaspdfromgensim.modelsimportKeyedVectorsfromsklearn.clusterimportKMeansfromflair.dataimportSentencefromflair.embeddingsimportWordEmbeddings,FlairEmbeddingsfromflair.embedding
- 自然语言处理N天-Day0501词袋和词向量模型
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg说明:本文依据《中文自然语言处理入门实战》完成。目前网上有不少转载的课程,我是从GitChat上购买。第五课文本可视化技巧算是进入正题了,NLP重要的一个环节,构建词向量模型,在这里使用到了Gensim库,安装方式很简单pipinstallgensim词袋模型BOW词袋将文本看作一个无序的词汇集合,忽略语法和单词顺序,对每一个单词进行
- 中文词向量训练-案例分析
Algorithm_Engineer_
基础知识和深度学习自然语言处理word2vec
1数据预处理,解析XML文件并分词#!/usr/bin/envpython#-*-coding:utf-8-*-#process_wiki_data.py用于解析XML,将XML的wiki数据转换为text格式importloggingimportos.pathimportsysfromgensim.corporaimportWikiCorpusimportjiebaimportjieba.ana
- pyLDAvis实现LDA结果可视化时报错OSError:invalid argument
dingbangchu
LDApython
因为当时查遍全网都没找到类似错误和解决办法,特此记录。放一下可视化部分的源码:importpyLDAvis.gensimimportpyLDAvisfromLDAimportneg_lda,neg_corpus,neg_dict,pos_lda,pos_corpus,pos_dictdata2=pyLDAvis.gensim.prepare(pos_lda,pos_corpus,pos_dict)
- pyLDAvis生成LDA主题并可视化
季诗筱
Pythonpython
这里写自定义目录标题pyLDAvis运行代码注意:pyLDAvis运行代码加载相关模块importgensimfromgensimimportcorporaimportmatplotlib.pyplotaspltimportmatplotlibimportnumpyasnpimportwarnings#fromgensim.modelsimportLdaModelimportpandasaspdf
- 基于Word2vec词聚类的关键词实现
Algorithm_Engineer_
人工智能word2vec聚类人工智能
一.基于Word2vec词聚类的关键词步骤基于Word2Vec的词聚类关键词提取包括以下步骤:1.准备文本数据:收集或准备文本数据,可以是单一文档或文档集合,涵盖关键词提取的领域。2.文本预处理:清洗文本数据,去除无关字符、标点符号,将文本转换为小写等。进行分词,将文本划分为词语。3.训练Word2Vec模型:使用预处理后的文本数据训练Word2Vec模型。可以使用现有的库如gensim,也可以自
- NLP学习笔记(为了完成基于知识图谱的问答系统进行的基础学习)
ChessZH
学习记录nlp自然语言处理python
目录前言0.需要使用的模型的学习(更新中)Bi-LSTM什么是LSTM与Bi-LSTM为什么使用LSTM与Bi-LSTMLSTM1.一切的基础——词袋模型与句子相似度词袋模型句子相似度简化:利用gensim遇到的问题2.TF-IDF——一个比较重要的原理什么是TF-IDF文本与预处理Gensim中的TF-IDF实践计算TF-IDF值第二部分的完整代码3.词形还原(Lemmatization)什么是
- 词向量模型及Word2Vector(二)
yousa_
今天来讲解一个非常经典的词向量模型word2vec并介绍一个非常强大的库gensim。先贴一段代码。fromgensim.modelsimportWord2Vecen_wiki_word2vec_model=Word2Vec.load('wiki.zh.text.model')test_words=['苹果','数学','学术','白痴','篮球']foriinrange(5):res=wn_wi
- 基于维基百科英文语料的Word2Vec模型使用
MilkLeong
自然语言处理nlp
关于这方面的知识还没有弄透彻模型使用的常用方法有(见博文):另外还可参看gensim.Word2Vec的官方文档记在这里,以免后面忘掉了
- import pyLDAvis as gensimvis报错
MilkLeong
自然语言处理pythonnlp
想对LDA模型分析结果可视化的时候,调用pyLDAvis模块反复报错,错误主要有如下两个:(1)odule'pyLDAvis.gensim_models'hasnoattribute'enable_notebook'(2)prepare()missing2requiredpositionalarguments:'vocab'and'term_frequency'可能跟自己对这些第三方package
- python分析方向的第三方库_python数据分析方向的第三方库是什么
佛渡潜行者
python分析方向的第三方库
python数据分析方向的第三方库是:1、Numpy;2、Pandas;3、SciPy;4、Matplotlib;5、Scikit-Learn;6、Keras;7、Gensim;8、Scrapy。本教程操作环境:windows7系统、Python3版、DellG3电脑。Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性。
- NLP基础2-词向量之Word2Vec
知识复盘计划
自然语言处理自然语言处理word2vec人工智能python
NLP基础1-词向量之序号化,One-Hot,BOW/TF,TF-IDFNLP基础2-词向量之Word2VecNLP基础3-词向量之Word2Vec的Gensim实现文章目录一、WordEmbedding1.什么是词嵌入,WordEmbedding?2.词嵌入技术的优势:3.词嵌入的相关算法二、Word2Vec基本介绍1.两个算法:2.两个优化方法3.主要应用4.主要缺点5.目标函数三、Word2
- 自然语言处理1——探索自然语言处理的基础 - Python入门篇
theskylife
自然语言处理数据挖掘自然语言处理python人工智能深度学习
目录写在开头1.介绍自然语言处理的基本概念1.1NLP的核心目标1.2常见的NLP任务1.3应用场景详细介绍1.3.1医疗保健1.3.2金融领域1.3.3教育领域1.3.4社交媒体分析2.Python中常用的自然语言处理库简介2.1NLTK(NaturalLanguageToolkit)2.2Spacy2.3Transformers2.4TextBlob2.5Gensim2.6Textacy2.7
- 人工智能python 模块_python机器学习和人工智能,基础模块和环境搭建
weixin_39560064
人工智能python模块
本文搭建包括numpy、pandas、gensim、matplotlib、tensorflow、sklearn、jieba、NLTK常用机器学习库,打造一个基础和全面的机器学习环境。人类一直试图让机器能够智能化,能有自主学习的能力,也就是人们常说的人工智能。从上世纪50年代,人工智能就开始了“推理期”;到70年代,人工智能的发展进入“知识期”;直到现在,人工智能在越来越多的领域深入实践。一,简介那
- How to Develop Word Embeddings in Python with Gensim
闪闪发亮的小星星
NLPwordpython开发语言
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/本教程分为6个部分;他们是:词嵌入Gensim库开发Word2Vec嵌入可视化单词嵌入加载Google的Word2Vec嵌入加载斯坦福大学的GloVe嵌入词嵌入单词嵌入是一种提供单词的密集向量表示的方法,这些单词捕获了有关其含义的某些信息。单词嵌入是对更
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f