以下来自陈越姥姥DS课的PPT,英文比较短小精悍
【Definition】A tree is a collection of nodes. The collection can be empty; otherwise, a tree consists of
(1) a distinguished node r, called the root;
(2) and zero or more nonempty (sub)trees T1...Tk, each of whose roots are connected by a directed edge from r.
Note:
1 Subtrees must not connect together. Therefore every node in the tree is the root of some subtree.
2 There are N — 1 edges in a tree with N nodes.
3 Normally the root is drawn at the top.
degree of a node : number of subtrees of the node. For example, degree(A) = 3, degree(F) = 0
degree of a tree : max{degree(node)} node belong tree For example, degree of this tree = 3.
parent : a node that has subtrees.
children : the roots of the subtrees of a parent.
siblings : children of the same parent.
leaf ( terminal node ) : a node with degree 0 (no children).
path from n1 to nk : a (unique) sequence of nodes n1, n2, …, nk such that ni is the parent of ni+1 for 1 <=i < k.
length of path : number of edges on the path.
depth of ni : length of the unique path from the root to ni. Depth(root) = 0.
height of ni : length of the longest path from ni to a leaf. Height(leaf) = 0, and height(D) = 2.
height (depth) of a tree : height(root) = depth(deepest leaf).
ancestors of a node : all the nodes along the path from the node up to the root.
descendants of a node : all the nodes in its subtrees.
二叉树是一颗棵树,不存在有多于两个的儿子的节点
有一些比较特殊的二叉树
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
以下是一些关于二叉树的基本算法,比如前序 后序 中序 层序遍历 求树的高度
/*
2
/ \
3 1
/ / \
5 6 4
*/
#include
#include
#define MAXN 1000
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
int Data;
BinTree Left;
BinTree Right;
};
void preorder(BinTree T)
{
if(T != NULL) {
printf("%d\n",T -> Data);
preorder(T -> Left);
preorder(T -> Right);
}
}
void inorder(BinTree T)
{
if(T != NULL) {
inorder(T -> Left);
printf("%d\n",T -> Data);
inorder(T -> Right);
}
}
void postorder(BinTree T)
{
if(T != NULL) {
postorder(T -> Left);
postorder(T -> Right);
printf("%d\n",T -> Data);
}
}
int getHeight(BinTree T)
{
if(T == NULL) return 0;
else {
int Left_Height = getHeight(T -> Left);
int Right_Height = getHeight(T -> Right);
if(Left_Height >= Right_Height) return Left_Height + 1;
return Right_Height + 1;
}
}
void levelorder(BinTree T)
{
if(T == NULL) return;
BinTree Que[MAXN];
int Front = 0,Rear = 0;
Que[Rear++] = T;
while(Front < Rear) {
BinTree _T = Que[Front++];
printf("%d\n",_T -> Data);
if(_T -> Left != NULL) Que[Rear++] = _T -> Left;
if(_T -> Right != NULL) Que[Rear++] = _T -> Right;
}
}
BinTree create()
{
return (Position)malloc(sizeof(struct TNode));
}
int main(void)
{
BinTree T1,T2,T3,T4,T5,T6;
//分配内存
T1 = create();
T2 = create();
T3 = create();
T4 = create();
T5 = create();
T6 = create();
//赋值
T1 -> Data = 1;
T2 -> Data = 2;
T3 -> Data = 3;
T4 -> Data = 4;
T5 -> Data = 5;
T6 -> Data = 6;
//建树
T2 -> Left = T3;
T2 -> Right = T1;
T3 -> Left = T5;
T3 -> Right = NULL;
T1 -> Left = T6;
T1 -> Right = T4;
T5 -> Left = NULL;
T5 -> Right = NULL;
T6 -> Left = NULL;
T6 -> Right = NULL;
T4 -> Left = NULL;
T4 -> Right = NULL;
printf("--------preorder-----------\n");
preorder(T2);
printf("--------inorder------------\n");
inorder(T2);
printf("--------postorder------------\n");
postorder(T2);
printf("--------levelorder---------\n");
levelorder(T2);
printf("Height is %d\n",getHeight(T2));
return 0;
}
下面分别是根据前序遍历和中序遍历找后序遍历,根据后序遍历和中序遍历找前序遍历
#include
#include
#define MAXN 1000
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
char Data;
BinTree Left;
BinTree Right;
};
BinTree build(char *pre,char *mid,int size)
{
if(size <= 0) return NULL;
int i = 0;
for(i = 0; i < size; i++) {
if(*(mid + i) == *pre) {
break;
}
}
BinTree T;
T = (Position)malloc(sizeof(struct TNode));
T -> Data = mid[i];
T -> Left = build(pre + 1,mid,i);
T -> Right = build(pre + 1 + i,mid + i + 1,size - i - 1);
return T;
}
void postorder(BinTree T)
{
if(T != NULL) {
postorder(T -> Left);
postorder(T -> Right);
printf("%c\n",T -> Data);
}
}
int main(void)
{
char pre[55],mid[55];
scanf("%s %s",pre,mid);
BinTree T = build(pre,mid,strlen(pre));
postorder(T);
return 0;
}
#include
#include
#define MAXN 1000
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
char Data;
BinTree Left;
BinTree Right;
};
BinTree build(char *post,char *mid,int size)
{
if(size <= 0) return NULL;
int i = 0;
for(i = 0; i < size; i++) {
if(*(mid + i) == *(post + size - 1)){
break;
}
}
BinTree T;
T = (Position)malloc(sizeof(struct TNode));
T -> Data = mid[i];
T -> Left = build(post,mid,i);
T -> Right = build(post + i,mid + i + 1,size - i - 1);
return T;
}
void preorder(BinTree T)
{
if(T != NULL) {
printf("%c\n",T -> Data);
preorder(T -> Left);
preorder(T -> Right);
}
}
int main(void)
{
char post[55],mid[55];
scanf("%s %s",post,mid);
BinTree T = build(post,mid,strlen(post));
preorder(T);
return 0;
}