秒杀系统设计实践

当我们设计一个秒杀系统的时候,我们应该考虑哪些问题?

  • 设计任何业务系统,首先都要搞清楚这个系统所具备的特点;秒杀系统具备哪些业务特性?(瞬时流量大;大量并发读和并发写;大量并发扣减库存,保证数据一致性;)
  • 利用什么技术手段去解决系统的业务特性?
  • 如何做好压测?
  • 本文参考代码:https://github.com/AndyGuo1/seconds-kill

秒杀业务&系统的特性?

业务特性:

  • 瞬时并发流量集中;
  • 对同一商品的库存操作频繁;
  • 经常存在一些作弊、刷单行为;

系统特性:

  • 高性能:秒杀涉及大量的并发读和并发写,因此支持高并发访问这点非常关键
  • 一致性:秒杀商品减库存的实现方式同样关键,有限数量的商品在同一时刻被很多倍的请求同时来减库存,在大并发更新的过程中都要保证数据的准确性。
  • 高可用:秒杀时会在一瞬间涌入大量的流量,为了避免系统宕机,保证高可用,需要做好流量限制;同时考虑一些极端情况出现时,如何做好planB

秒杀系统的优化方案思路?

1、后端优化

核心思路是将请求尽量拦截在系统上游

  • 限流:屏蔽掉无用的流量,允许少部分流量走后端。假设现在的后端库存为10,有1000个购买请求,那么最终只有10个可以成功,99%的请求是无效的;
  • 削峰:秒杀请求在时间上高度集中于某一个时间点,瞬时流量容易压垮系统,因此需要对流量进行削峰处理,缓冲瞬时流量,尽量让服务器对资源进行平缓处理
  • 异步:将同步请求转换为异步请求,来提高并发量,本质也是削峰处理
  • 利用缓存:创建订单时,每次都需要先查询判断库存,只有少部分成功的请求才会创建订单,因此可以将商品信息放在缓存中,减少数据库查询
  • 负载均衡:利用 Nginx 等使用多个服务器并发处理请求,减少单个服务器压力

2、前端优化

  • 限流:前端答题或验证码,来分散用户的请求
  • 禁止重复提交:限定每个用户发起一次秒杀后,需等待才可以发起另一次请求,从而减少用户的重复请求
  • 本地标记:用户成功秒杀到商品后,将提交按钮置灰,禁止用户再次提交请求
  • 动静分离:将前端静态数据直接缓存到离用户最近的地方,比如用户浏览器、CDN 或者服务端的缓存中

3、防作弊优化

  • 隐藏秒杀接口:如果秒杀地址直接暴露,在秒杀开始前可能会被恶意用户来刷接口,因此需要在没到秒杀开始时间不能获取秒杀接口,只有秒杀开始了,才返回秒杀地址 url 和验证 MD5,用户拿到这两个数据才可以进行秒杀;
  • 同账号多次发出请求:前端优化部分的禁止多次提交可以避免;也可使用redis标志位,每个用户的所有请求都要先尝试在redis中插入一个userId_secondsKill标志位,成功插入才可以执行后续的秒杀逻辑,其他被过滤掉,执行完秒杀逻辑后删除标志位;
  • 多账号同IP发出的多个请求:这种可以检测IP的请求频率,如果过于频繁则弹出一个验证码;
  • 多账号不同IP发起不同的请求:这种一般都是僵尸账号,检测账号的活跃度或者等级等信息,来进行限制。比如微博抽奖,用 iphone 的年轻女性用户中奖几率更大。通过用户画像限制僵尸号无法参与秒杀或秒杀不能成功

4、数据结构部分

一般一张商品库存表,一张秒杀订单表

CREATE TABLE `product_stock` (
    `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
    `product_no` varchar(50) NOT NULL DEFAULT '' COMMENT '商品编号',
    `product_name` varchar(50) NOT NULL DEFAULT '' COMMENT '商品名称',
    `current_count` int(11) NOT NULL COMMENT '库存',
    `sale_out` int(11) NOT NULL COMMENT '已售',
    `version` int(11) NOT NULL COMMENT '乐观锁,版本号',
    PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='商品库存表';

CREATE TABLE `product_order` (
    `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
    `order_no` int(11) NOT NULL COMMENT '订单号',
    `product_no` varchar(50) NOT NULL DEFAULT '' COMMENT '商品编号',
    `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
    PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='商品秒杀订单表';

5、代码部分

(1)、核心流程

部分简单流程代码,距离实际生产使用较远,但可以参考理解,

@Override
public int createWrongOrder(String productNo) throws Exception {
   // 商品库存校验    
   Stock stock = checkStock(productNo);
   // 商品库存扣减
   saleStock(stock);
   // 生成订单
   int res = createOrder(stock);
   return res;
}

private Stock checkStock(String productNo) throws Exception {
    Stock stock = stockService.getStockById(productNo);
    if (stock.getCount() < 1) {
        throw new RuntimeException("库存不足");
    }
    return stock;
}
private int saleStock(Stock stock) {
    stock.setSale(stock.getSale() + 1);
    stock.setCount(stock.getCount() - 1);
    return stockService.updateStockById(stock);
}
private int createOrder(Stock stock) throws Exception {
    StockOrder order = new StockOrder();
    order.setProductNo(stock.getProductNo());
    order.setName(stock.getName());
    order.setCreateTime(new Date());
    int res = orderMapper.insertSelective(order);
    if (res == 0) {
        throw new RuntimeException("创建订单失败");
    }
    return res;
}
// 扣库存 Mapper 文件
@Update("UPDATE stock SET count=#{count,jdbcType=INTEGER},name=#{name,jdbcType=VARCHAR}, " + "sale=#{sale,jdbcType=INTEGER},version=#{version,jdbcType =INTEGER}" + "WHERE id=#{id,jdbcType=INTEGER}")

由于库存校验和库存扣减是一个非原子的操作,所以可能造成超卖的现象;

(2)、解决超卖,乐观锁更新库存

悲观锁虽然可以解决超卖问题,但是加锁的时间可能会很长,会长时间的限制其他用户的访问,导致很多请求等待锁,卡死在这里,如果这种请求很多就会耗尽连接,系统出现异常。乐观锁默认不加锁,更失败就直接返回抢购失败,可以承受较高并发

@Override
public int createOptimisticOrder(int sid) throws Exception {
    // 校验库存
    Stock stock = checkStock(sid);
    // 乐观锁更新
    saleStockOptimstic(stock);
    // 创建订单
    int id = createOrder(stock);
    return id;
}
// 乐观锁 Mapper 文件
@Update("UPDATE stock SET count = count - 1, sale = sale + 1, version = version + 1 WHERE " +
        "id = #{id, jdbcType = INTEGER} AND version = #{version, jdbcType = INTEGER}")

(3)、Redis计数限流

前面已经分析过,1000个请求,最终可能之后10个是可以生成订单有效的;也就是说有 990 的请求是无效的,这些无效的请求也会给数据库带来压力,因此可以在在请求落到数据库之前就将无效的请求过滤掉,将并发控制在一个可控的范围,这样落到数据库的压力就小很多

关于限流的方法,可以看这篇博客浅析限流算法,由于计数限流实现起来比较简单,因此采用计数限流,限流的实现可以直接使用 Guava 的 RateLimit 方法,但是由于后续需要将实例通过 Nginx 实现负载均衡,这里选用 Redis 实现分布式限流;

限流要保证写入 Redis 操作的原子性,因此利用 Redis 的单线程机制,通过 LUA 脚本来完成。

(4)、Redis 缓存商品库存信息

虽然限流能够过滤掉一些无效的请求,但是还是会有很多请求落在数据库上,通过 Druid 监控可以看出,实时查询库存的语句被大量调用,对于每个没有被过滤掉的请求,都会去数据库查询库存来判断库存是否充足,对于这个查询可以放在缓存 Redis 中,Redis 的数据是存放在内存中的,速度快很多。

所以有必要进行缓存预热;在秒杀开始前,需要将秒杀商品信息提前缓存到 Redis 中,这么秒杀开始时则直接从 Redis 中读取,也就是缓存预热,Springboot 中开发者通过 implement ApplicationRunner 来设定 SpringBoot 启动后立即执行的方法

@Component
public class RedisPreheatRunner implements ApplicationRunner {

    @Autowired
    private StockService stockService;

    @Override
    public void run(ApplicationArguments args) throws Exception {
        // 从数据库中查询热卖商品,商品 id 为 1
        Stock stock = stockService.getStockById(1);
        // 删除旧缓存 todo 这里可以将三个库存相关字段缓存到一个key中
        RedisPoolUtil.del(RedisKeysConstant.STOCK_COUNT + stock.getCount());
        RedisPoolUtil.del(RedisKeysConstant.STOCK_SALE + stock.getSale());
        RedisPoolUtil.del(RedisKeysConstant.STOCK_VERSION + stock.getVersion());
        //缓存预热
        int sid = stock.getId();
        RedisPoolUtil.set(RedisKeysConstant.STOCK_COUNT + sid, String.valueOf(stock.getCount()));
        RedisPoolUtil.set(RedisKeysConstant.STOCK_SALE + sid, String.valueOf(stock.getSale()));
        RedisPoolUtil.set(RedisKeysConstant.STOCK_VERSION + sid, 			String.valueOf(stock.getVersion()));
    }
}

既然引入了缓存记录库存,就要解决缓存和数据库的数据一致性问题;推荐看参考中的 使用缓存的正确姿势,首先看下先更新数据库,再更新缓存策略,假设 A、B 两个线程,A 成功更新数据,在要更新缓存时,A 的时间片用完了,B 更新了数据库接着更新了缓存,这是 CPU 再分配给 A,则 A 又更新了缓存,这种情况下缓存中就是脏数据;

秒杀系统设计实践_第1张图片

那么,如果避免这个问题呢?就是库存变更时,缓存不做更新,仅做删除,先更新数据库再删除缓存。对于上面的问题,A 更新了数据库,还没来得及删除缓存,B 又更新了数据库,接着删除了缓存,然后 A 删除了缓存,这样只有下次缓存未命中时,才会从数据库中重建缓存,避免了脏数据。但是,也会有极端情况出现脏数据,A 做查询操作,没有命中缓存,从数据库中查询,但是还没来得及更新缓存,B 就更新了数据库,接着删除了缓存,然后 A 又重建了缓存,这时 A 中的就是脏数据;但是这种极端情况需要数据库的写操作前进入数据库,又晚于写操作删除缓存来更新缓存,发生的概率极其小,不过为了避免这种情况,可以为缓存设置过期时间。一般还会利用分布式锁+失败队列补偿来解决,但是不适合这种高并发的写的场景,效率太低;

秒杀系统设计实践_第2张图片

代码如下,仅供理解参考,比建议线上使用:

@Override
public int createOrderWithLimitAndRedis(int sid) throws Exception {
    // 校验库存,从 Redis 中获取
    Stock stock = checkStockWithRedisWithDel(sid);
    // 乐观锁更新库存和Redis
    saleStockOptimsticWithRedisWithDel(stock);
    // 创建订单
    int res = createOrder(stock);
    return res;
}
// Redis 校验库存
private Stock checkStockWithRedisWithDel(int sid) throws Exception {
    Integer count = null;
    Integer sale = null;
    Integer version = null;
    List data = RedisPoolUtil.listGet(RedisKeysConstant.STOCK + sid);
    if (data.size() == 0) {
        // Redis 不存在,先从数据库中获取,再放到 Redis 中
        Stock newStock = stockService.getStockById(sid);
        RedisPoolUtil.listPut(RedisKeysConstant.STOCK + newStock.getId(), String.valueOf(newStock.getCount()),
                              String.valueOf(newStock.getSale()), String.valueOf(newStock.getVersion()));
        count = newStock.getCount();
        sale = newStock.getSale();
        version = newStock.getVersion();
    } else {
        count = Integer.parseInt(data.get(0));
        sale = Integer.parseInt(data.get(1));
        version = Integer.parseInt(data.get(2));
    }
    if (count < 1) {
        log.info("库存不足");
        throw new RuntimeException("库存不足 Redis currentCount: " + sale);
    }
    Stock stock = new Stock();
    stock.setId(sid);
    stock.setCount(count);
    stock.setSale(sale);
    stock.setVersion(version);
    // 此处应该是热更新,但是在数据库中只有一个商品,所以直接赋值
    stock.setName("手机");
    return stock;
}
private void saleStockOptimsticWithRedisWithDel(Stock stock) throws Exception {
    // 乐观锁更新数据库
    int res = stockService.updateStockByOptimistic(stock);
    // 删除缓存,应该使用 Redis 事务
    RedisPoolUtil.del(RedisKeysConstant.STOCK + stock.getId());
    log.info("删除缓存成功");
    if (res == 0) {
        throw new RuntimeException("并发更新库存失败");
    }
}

(5)、发现热点数据

热点数据就是用户的热点请求对应的数据,分成静态热点数据和动态热点数据。

静态热点数据就是能够提前预测的数据,比如约定商品 A、B、C 参与秒杀,则可以提前对商品进行标记处理。动态热点数据就是不能被提前预测的,比如在商家在抖音上投放广告,导致商品短时间内被大量购买,临时产生热点数据。对于动态热点数据,最主要的就是能够提前预测和发现,以便于及时处理,这里给出极客时间:许令波 - 如何设计一个秒杀系统中对于热点数据发现系统的实现:

  1. 构建一个异步的系统,它可以收集交易链路上各个环节中的中间件产品的热点 Key
  2. 建立一个热点上报和可以按照需求订阅的热点服务的下发规范,主要目的是通过交易链路上各个系统(包括详情、购物车、交易、优惠、库存、物流等)访问的时间差,把上游已经发现的热点透传给下游系统,提前做好保护。
  3. 将上游系统收集的热点数据发送到热点服务台,然后下游系统(如交易系统)就会知道哪些商品会被频繁调用,然后做热点保护。

 

秒杀系统设计实践_第3张图片

我们通过部署在每台机器上的 Agent 把日志汇总到聚合和分析集群中,然后把符合一定规则的热点数据,通过订阅分发系统再推送到相应的系统中。你可以是把热点数据填充到 Cache 中,或者直接推送到应用服务器的内存中,还可以对这些数据进行拦截,总之下游系统可以订阅这些数据,然后根据自己的需求决定如何处理这些数据。

对于热点数据,除了上文所提到的缓存,还要进行隔离和限制,比如把热点商品限制在一个请求队列里,防止因某些热点商品占用太多的服务器资源,而使其他请求始终得不到服务器的处理资源;将这种热点数据隔离出来,不要让 1% 的请求影响到另外的 99%

(6)、Kafka消息队列异步

服务器的资源是恒定的,你用或者不用它的处理能力都是一样的,所以出现峰值的话,很容易导致忙到处理不过来,闲的时候却又没有什么要处理,因此可以通过削峰来延缓用户请求的发出,让服务端处理变得更加平稳。

项目中可以采用的是用消息队列 Kafka 来缓冲瞬时流量,将同步的生单直接调用转成异步的间接推送,中间通过一个队列在一端承接瞬时的流量洪峰,在另一端平滑地将消息推送出去。

秒杀系统设计实践_第4张图片

关于 Kafka 的学习,推荐朱小厮的博客和博主的书《深入理解 Kafka:核心设计与实践原理》,向 Kafka 发送消息和从 Kafka 拉取消息需要对消息进行序列化处理,这里采用的是Gson框架

// 向 Kafka 发送消息
public void createOrderWithLimitAndRedisAndKafka(int sid) throws Exception {
    // 校验库存(库存不存在,查库并更新)
    Stock stock = checkStockWithRedisWithDel(sid);
    // 下单请求发送至 kafka,需要序列化 stock
    kafkaTemplate.send(kafkaTopic, gson.toJson(stock));
    log.info("消息发送至 Kafka 成功");
}
// 监听器从 Kafka 拉取消息
public class ConsumerListen {

    private Gson gson = new GsonBuilder().create();

    @Autowired
    private OrderService orderService;

    @KafkaListener(topics = "SECONDS-KILL-TOPIC")
    public void listen(ConsumerRecord record) throws Exception {
        Optional kafkaMessage = Optional.ofNullable(record.value());
        // Object -> String
        String message = (String) kafkaMessage.get();
        // 反序列化
        Stock stock = gson.fromJson((String) message, Stock.class);
        // 创建订单
        orderService.consumerTopicToCreateOrderWithKafka(stock);
    }
}


/**
 * Kafka 消费消息执行创建订单业务
 */
public int consumerTopicToCreateOrderWithKafka(Stock stock) throws Exception {
    // 乐观锁更新库存和 删除Redis
    saleStockOptimsticWithRedisDel(stock);
    int res = createOrder(stock);
    if (res == 1) {
        log.info("Kafka 消费 Topic 创建订单成功");
    } else {
        log.info("Kafka 消费 Topic 创建订单失败");
    }

    return res;
}

 

(7)、秒杀系统架构

        前面说的秒杀系统的架构原则,结合淘宝的早起秒杀系统架构演进,梳理不同请求量体下,最佳的秒杀系统架构是什么样的。
        如果你想快速搭建一个简单的秒杀系统,只需要把你的商品购买页面增加一个“定时上架”功能,仅在秒杀开始时才让用户看到购买按钮,当商品的库存卖完了也就结束了。这就是当时第一个版本的秒杀系统实现方式。

        但随着请求量的加大(比如从1w/s到了10w/s的量级),这个简单的架构很快就遇到了瓶颈,因此需要做架构改造来提升系统性能。这些架构改造包括:

  1. 把秒杀系统独立出来单独打造一个系统,这样可以有针对性地做优化,例如这个独立出来的系统就减少了店铺装修的功能,减少了页面的复杂度;
  2. 在系统部署上也独立做一个机器集群,这样秒杀的大流量就不会影响到正常的商品购买集群的机器负载;
  3. 将热点数据(如库存数据)单独放到一个缓存系统中,以提高“读性能”;
  4. 增加秒杀答题,防止有秒杀器抢单。

此时的系统架构变成了下图这个样子。最重要的就是,秒杀详情成为了一个独立的新系统,另外核心的一些数据放到了缓存(Cache)中,其他的关联系统也都以独立集群的方式进行部署。

秒杀系统设计实践_第5张图片

然而这个架构仍然支持不了超过100w/s的请求量,所以为了进一步提升秒杀系统的性能,我们又对架构做进一步升级,比如:

  1. 对页面进行彻底的动静分离,使得用户秒杀时不需要刷新整个页面,而只需要点击抢宝按钮,借此把页面刷新的数据降到最少;
  2. 在服务端对秒杀商品进行本地缓存,不需要再调用依赖系统的后台服务获取数据,甚至不需要去公共的缓存集群中查询数据,这样不仅可以减少系统调用,而且能够避免压垮公共缓存集群。
  3. 增加系统限流保护,防止最坏情况发生。

经过这些优化,系统架构变成了下图中的样子。在这里,我们对页面进行了进一步的静态化,秒杀过程中不需要刷新整个页面,而只需要向服务端请求很少的动态数据。而且,最关键的详情和交易系统都增加了本地缓存,来提前缓存秒杀商品的信息,热点数据库也做了独立部署,等等。

秒杀系统设计实践_第6张图片

       从前面的几次升级来看,其实越到后面需要定制的地方越多,也就是越“不通用”。例如,把秒杀商品缓存在每台机器的内存中,这种方式显然不适合太多的商品同时进行秒杀的情况,因为单机的内存始终有限。所以要取得极致的性能,就要在其他地方(比如,通用性、易用性、成本等方面)有所牺牲。

你可能感兴趣的:(热点业务设计相关那些事儿)