TensorFlow2.0教程10:过拟合和欠拟合

  1.观察数据

  NUM_WORDS = 10000

  (train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data(num_words=NUM_WORDS)

  def multi_hot_sequences(sequences, dimension):

  results = np.zeros((len(sequences), dimension))

  for i, word_indices in enumerate(sequences):

  results[i, word_indices] = 1.0

  return results

  train_data = multi_hot_sequences(train_data, dimension=NUM_WORDS)

  test_data = multi_hot_sequences(test_data, dimension=NUM_WORDS)

  plt.plot(train_data[0])

  

png

 

  防止过度拟合的最简单方法是减小模型的大小,即模型中可学习参数的数量。

  深度学习模型往往善于适应训练数据,但真正的挑战是概括,而不是适合。

  另一方面,如果网络具有有限的记忆资源,则将不能容易地学习映射。为了最大限度地减少损失,它必须学习具有更强预测能力的压缩表示。同时,如果您使模型太小,则难以适应训练数据。 “太多容量”和“容量不足”之间存在平衡。

  要找到合适的模型大小,最好从相对较少的图层和参数开始,然后开始增加图层的大小或添加新图层,直到看到验证损失的收益递减为止。

  我们将在电影评论分类网络上使用Dense图层作为基线创建一个简单模型,然后创建更小和更大的版本,并进行比较。

  2.创建一个baseline模型

  import tensorflow.keras.layers as layers

  baseline_model = keras.Sequential(

  [

  layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),

  layers.Dense(16, activation='relu'),

  layers.Dense(1, activation='sigmoid')

  ]

  )

  baseline_model.compile(optimizer='adam',

  loss='binary_crossentropy',

  metrics=['accuracy', 'binary_crossentropy'])

  baseline_model.summary()

  Model: "sequential_5"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  dense_15 (Dense) (None, 16) 160016

  _________________________________________________________________

  dense_16 (Dense) (None, 16) 272

  _________________________________________________________________

  dense_17 (Dense) (None, 1) 17

  =================================================================

  Total params: 160,305

  Trainable params: 160,305

  Non-trainable params: 0

  _________________________________________________________________

  baseline_history = baseline_model.fit(train_data, train_labels,

  epochs=20, batch_size=512,

  validation_data=(test_data, test_labels),

  verbose=2)

  Epoch 19/20

  25000/25000 - 3s - loss: 0.0055 - accuracy: 0.9999 - binary_crossentropy: 0.0055 - val_loss: 0.8937 - val_accuracy: 0.8492 - val_binary_crossentropy: 0.8937

  Epoch 20/20

  25000/25000 - 3s - loss: 0.0044 - accuracy: 0.9999 - binary_crossentropy: 0.0044 - val_loss: 0.9217 - val_accuracy: 0.8488 - val_binary_crossentropy: 0.9217

  3.创建一个小模型

  small_model = keras.Sequential(

  [

  layers.Dense(4, activation='relu', input_shape=(NUM_WORDS,)),

  layers.Dense(4, activation='relu'),

  layers.Dense(1, activation='sigmoid')

  ]

  )

  small_model.compile(optimizer='adam',

  loss='binary_crossentropy',

  metrics=['accuracy', 'binary_crossentropy'])

  small_model.summary()

  Model: "sequential_6"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  dense_18 (Dense) (None, 4) 40004

  _________________________________________________________________

  dense_19 (Dense) (None, 4) 20

  _________________________________________________________________

  dense_20 (Dense) (None, 1) 5

  =================================================================

  Total params: 40,029

  Trainable params: 40,029

  Non-trainable params: 0

  _________________________________________________________________

  small_history = small_model.fit(train_data, train_labels,

  epochs=20, batch_size=512,

  validation_data=(test_data, test_labels),

  verbose=2)

  Epoch 19/20

  25000/25000 - 2s - loss: 0.0466 - accuracy: 0.9925 - binary_crossentropy: 0.0466 - val_loss: 0.4780 - val_accuracy: 0.8622 - val_binary_crossentropy: 0.4780

  Epoch 20/20

  25000/25000 - 2s - loss: 0.0426 - accuracy: 0.9936 - binary_crossentropy: 0.0426 - val_loss: 0.4976 - val_accuracy: 0.8608 - val_binary_crossentropy: 0.4976

  4.创建一个大模型

  big_model = keras.Sequential(

  [

  layers.Dense(512, activation='relu', input_shape=(NUM_WORDS,)),

  layers.Dense(512, activation='relu'),

  layers.Dense(1, activation='sigmoid')

  ]

  )

  big_model.compile(optimizer='adam',

  loss='binary_crossentropy',

  metrics=['accuracy', 'binary_crossentropy'])

  big_model.summary()

  Model: "sequential_7"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  dense_21 (Dense) (None, 512) 5120512

  _________________________________________________________________

  dense_22 (Dense) (None, 512) 262656

  _________________________________________________________________

  dense_23 (Dense) (None, 1) 513

  =================================================================

  Total params: 5,383,681

  Trainable params: 5,383,681

  Non-trainable params: 0

  _________________________________________________________________

  big_history = big_model.fit(train_data, train_labels,

  epochs=20, batch_size=512,

  validation_data=(test_data, test_labels),

  verbose=2)

  Epoch 19/20

  25000/25000 - 6s - loss: 1.4224e-05 - accuracy: 1.0000 - binary_crossentropy: 1.4224e-05 - val_loss: 0.9193 - val_accuracy: 0.8703 - val_binary_crossentropy: 0.9193

  Epoch 20/20

  25000/25000 - 6s - loss: 1.2638e-05 - accuracy: 1.0000 - binary_crossentropy: 1.2638e-05 - val_loss: 0.9282 - val_accuracy: 0.8704 - val_binary_crossentropy: 0.9282

  def plot_history(histories, key='binary_crossentropy'):

  plt.figure(figsize=(16,10))

  for name, history in histories:

  val = plt.plot(history.epoch, history.history['val_'+key],

  '--', label=name.title()+' Val')

  plt.plot(history.epoch, history.history[key], color=val[0].get_color(),

  label=name.title()+' Train')

  plt.xlabel('Epochs')

  plt.ylabel(key.replace('_',' ').title())

  plt.legend()

  plt.xlim([0,max(history.epoch)])

  plot_history([('baseline', baseline_history),

  ('small', small_history),

  ('big', big_history)])

  

png

 

  请注意,较大的网络在仅仅一个时期之后几乎立即开始过度拟合,并且更过拟合更严重。 网络容量越大,能够越快地对训练数据进行建模(导致训练损失低),但过度拟合的可能性越大(导致训练和验证损失之间的差异很大)。

  5.添加l2正则

  l2_model = keras.Sequential(

  [

  layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),

  activation='relu', input_shape=(NUM_WORDS,)),

  layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),

  activation='relu'),

  layers.Dense(1, activation='sigmoid')

  ]

  )

  l2_model.compile(optimizer='adam',

  loss='binary_crossentropy',

  metrics=['accuracy', 'binary_crossentropy'])

  l2_model.summary()

  l2_history = l2_model.fit(train_data, train_labels,

  epochs=20, batch_size=512,

  validation_data=(test_data, test_labels),

  verbose=2)

  Model: "sequential_9"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  dense_27 (Dense) (None, 16) 160016

  _________________________________________________________________

  dense_28 (Dense) (None, 16) 272

  _________________________________________________________________

  dense_29 (Dense) (None, 1) 17

  =================================================================

  Total params: 160,305

  Trainable params: 160,305

  Non-trainable params: 0

  _________________________________________________________________

  ...

  Epoch 19/20

  25000/25000 - 3s - loss: 0.1314 - accuracy: 0.9842 - binary_crossentropy: 0.0572 - val_loss: 0.5676 - val_accuracy: 0.8578 - val_binary_crossentropy: 0.4927

  Epoch 20/20

  25000/25000 - 3s - loss: 0.1278 - accuracy: 0.9856 - binary_crossentropy: 0.0530 - val_loss: 0.5750 - val_accuracy: 0.8580 - val_binary_crossentropy: 0.5001

  plot_history([('baseline', baseline_history),

  ('l2', l2_history)])

  

png

 

  6.添加dropout

  dpt_model = keras.Sequential(

  [无锡人流哪家好 http://www.wxbhffk.com/

  layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),

  layers.Dropout(0.5),

  layers.Dense(16, activation='relu'),

  layers.Dropout(0.5),

  layers.Dense(1, activation='sigmoid')

  ]

  )

  dpt_model.compile(optimizer='adam',

  loss='binary_crossentropy',

  metrics=['accuracy', 'binary_crossentropy'])

  dpt_model.summary()

  dpt_history = dpt_model.fit(train_data, train_labels,

  epochs=20, batch_size=512,

  validation_data=(test_data, test_labels),

  verbose=2)

  Model: "sequential_10"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  dense_30 (Dense) (None, 16) 160016

  _________________________________________________________________

  dropout (Dropout) (None, 16) 0

  _________________________________________________________________

  dense_31 (Dense) (None, 16) 272

  _________________________________________________________________

  dropout_1 (Dropout) (None, 16) 0

  _________________________________________________________________

  dense_32 (Dense) (None, 1) 17

  =================================================================

  Total params: 160,305

  Trainable params: 160,305

  Non-trainable params: 0

  _________________________________________________________________

  ...

  Epoch 19/20

  25000/25000 - 3s - loss: 0.1069 - accuracy: 0.9705 - binary_crossentropy: 0.1069 - val_loss: 0.5379 - val_accuracy: 0.8740 - val_binary_crossentropy: 0.5379

  Epoch 20/20

  25000/25000 - 3s - loss: 0.1068 - accuracy: 0.9720 - binary_crossentropy: 0.1068 - val_loss: 0.5721 - val_accuracy: 0.8732 - val_binary_crossentropy: 0.5721

  plot_history([('baseline', baseline_history),

  ('dropout', dpt_history)])

  

png

 

  防止神经网络中过度拟合的最常用方法:

  获取更多训练数据。

  减少网络容量。

  添加权重正规化。

  添加dropout。

转载于:https://www.cnblogs.com/gnz49/p/11435237.html

你可能感兴趣的:(TensorFlow2.0教程10:过拟合和欠拟合)