Eigen学习总结

前言

最早接触Eigen,是在高翔博士编著的《视觉SLAM十四讲》中,今天在这里整理一下。

Eigen是一个C++ 开源线性代数库。它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。许多上层的软件库也使用Eigen 进行矩阵运算,包括g2o、Sophus 等。

安装

1.Ubuntu系统

sudo apt-get install libeigen3-dev

Eigen 头文件的默认位置为/usr/include/eigen3/

2.Windows系统
在Eigen官网下载即可,不用安装。

如果是VS项目,打开项目的属性页,依次进入属性配置—>C/C++—>附加包含目录,然后添加Eigen文件的路径。

使用

这里直接上高博的代码。

代码1

source: https://github.com/gaoxiang12/slambook/blob/master/ch3/useEigen/eigenMatrix.cpp

#include 
using namespace std;
#include 
// Eigen 部分
#include 
// 稠密矩阵的代数运算(逆,特征值等)
#include 

#define MATRIX_SIZE 50

/****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/

int main( int argc, char** argv )
{
    // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
    // 声明一个2*3的float矩阵
    Eigen::Matrix<float, 2, 3> matrix_23;

    // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
    // 例如 Vector3d 实质上是 Eigen::Matrix,即三维向量
    Eigen::Vector3d v_3d;
	// 这是一样的
    Eigen::Matrix<float,3,1> vd_3d;

    // Matrix3d 实质上是 Eigen::Matrix
    Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零
    // 如果不确定矩阵大小,可以使用动态大小的矩阵
    Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
    // 更简单的
    Eigen::MatrixXd matrix_x;
    // 这种类型还有很多,我们不一一列举

    // 下面是对Eigen阵的操作
    // 输入数据(初始化)
    matrix_23 << 1, 2, 3, 4, 5, 6;
    // 输出
    cout << matrix_23 << endl;

    // 用()访问矩阵中的元素
    for (int i=0; i<2; i++) {
        for (int j=0; j<3; j++)
            cout<<matrix_23(i,j)<<"\t";
        cout<<endl;
    }

    // 矩阵和向量相乘(实际上仍是矩阵和矩阵)
    v_3d << 3, 2, 1;
    vd_3d << 4,5,6;
    // 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
    // Eigen::Matrix result_wrong_type = matrix_23 * v_3d;
    // 应该显式转换
    Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
    cout << result << endl;

    Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
    cout << result2 << endl;

    // 同样你不能搞错矩阵的维度
    // 试着取消下面的注释,看看Eigen会报什么错
    // Eigen::Matrix result_wrong_dimension = matrix_23.cast() * v_3d;

    // 一些矩阵运算
    // 四则运算就不演示了,直接用+-*/即可。
    matrix_33 = Eigen::Matrix3d::Random();      // 随机数矩阵
    cout << matrix_33 << endl << endl;

    cout << matrix_33.transpose() << endl;      // 转置
    cout << matrix_33.sum() << endl;            // 各元素和
    cout << matrix_33.trace() << endl;          // 迹
    cout << 10*matrix_33 << endl;               // 数乘
    cout << matrix_33.inverse() << endl;        // 逆
    cout << matrix_33.determinant() << endl;    // 行列式

    // 特征值
    // 实对称矩阵可以保证对角化成功
    Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );
    cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;
    cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;

    // 解方程
    // 我们求解 matrix_NN * x = v_Nd 这个方程
    // N的大小在前边的宏里定义,它由随机数生成
    // 直接求逆自然是最直接的,但是求逆运算量大

    Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
    matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
    Eigen::Matrix< double, MATRIX_SIZE,  1> v_Nd;
    v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );

    clock_t time_stt = clock(); // 计时
    // 直接求逆
    Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;
    cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl;
    
	// 通常用矩阵分解来求,例如QR分解,速度会快很多
    time_stt = clock();
    x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
    cout <<"time use in Qr decomposition is " <<1000*  (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;

    return 0;
}

这个程序讲解了:

  • Eigen中矩阵的定义,初始化,访问,矩阵运算,求特征值,解方程
  • 注意事项:不能混合两种不同类型的矩阵;不能搞错矩阵的维度
  • 如何计算程序运行时间

说明:
1.Eigen提供的矩阵和MATLAB很相似,几乎所有的数据都当作矩阵来处理。但是,为了实现更好的效率,在Eigen中你需要指定矩阵的大小和类型。对于在编译时期就知道大小的矩阵,处理起来会比动态变化大小的矩阵更快一些。因此,像旋转矩阵、变换矩阵这样的数据,完全可在编译时期确定它们的大小和数据类型。

2.Eigen矩阵不支持自动类型提升,这和C++ 的内建数据类型有较大差异。在C++程序中,我们可以把一个float数据和double数据相加、相乘,编译器会自动把数据类型转换为最合适的那种。而在 Eigen 中,出于性能的考虑,必须显式地对矩阵类型进行转换。而如果忘了这样做,Eigen会(不太友好地)提示您一个“YOU MIXED DIFFERENT NUMERIC TYPES …”的编译错误。你可以尝试找一下这条信息出现错误提示的哪个部分。如果错误信息太长最好保存到一个文件里再找。

3.在计算过程中你也需要保证矩阵维数的正确性,否则会出现“YOU MIXED MATRICES OF DIFFERENT SIZES”。请你不要抱怨这种错误提示方式,对于C++模板元编程,能够提示出可以阅读的信息已经是很幸运的了。以后,若发现 Eigen 出错,你可以直接寻找大写的部分,推测出了什么问题。

4.可以去 http://eigen.tuxfamily.org/dox-devel/modules.html 学习更多关于 Eigen 的知识。

代码2

source: https://github.com/gaoxiang12/slambook/blob/master/ch3/useGeometry/eigenGeometry.cpp

在Eigen 中使用四元数、欧拉角和旋转矩阵,并演示它们之间的变换方式。

#include 
#include 
using namespace std;

#include 
// Eigen 几何模块
#include 

/****************************
* 本程序演示了 Eigen 几何模块的使用方法
****************************/

int main ( int argc, char** argv )
{
    // Eigen/Geometry 模块提供了各种旋转和平移的表示
    // 3D 旋转矩阵直接使用 Matrix3d 或 Matrix3f
    Eigen::Matrix3d rotation_matrix = Eigen::Matrix3d::Identity();
    // 旋转向量使用 AngleAxis, 它底层不直接是Matrix,但运算可以当作矩阵(因为重载了运算符)
    Eigen::AngleAxisd rotation_vector ( M_PI/4, Eigen::Vector3d ( 0,0,1 ) );     //沿 Z 轴旋转 45 度
    cout .precision(3);
    cout<<"rotation matrix =\n"<<rotation_vector.matrix() <<endl;                //用matrix()转换成矩阵
    // 也可以直接赋值
    rotation_matrix = rotation_vector.toRotationMatrix();
    // 用 AngleAxis 可以进行坐标变换
    Eigen::Vector3d v ( 1,0,0 );
    Eigen::Vector3d v_rotated = rotation_vector * v;
    cout<<"(1,0,0) after rotation = "<<v_rotated.transpose()<<endl;
    // 或者用旋转矩阵
    v_rotated = rotation_matrix * v;
    cout<<"(1,0,0) after rotation = "<<v_rotated.transpose()<<endl;

    // 欧拉角: 可以将旋转矩阵直接转换成欧拉角
    Eigen::Vector3d euler_angles = rotation_matrix.eulerAngles ( 2,1,0 ); // ZYX顺序,即roll pitch yaw顺序
    cout<<"yaw pitch roll = "<<euler_angles.transpose()<<endl;

    // 欧氏变换矩阵使用 Eigen::Isometry
    Eigen::Isometry3d T=Eigen::Isometry3d::Identity();                // 虽然称为3d,实质上是4*4的矩阵
    T.rotate ( rotation_vector );                                     // 按照rotation_vector进行旋转
    T.pretranslate ( Eigen::Vector3d ( 1,3,4 ) );                     // 把平移向量设成(1,3,4)
    cout << "Transform matrix = \n" << T.matrix() <<endl;

    // 用变换矩阵进行坐标变换
    Eigen::Vector3d v_transformed = T*v;                              // 相当于R*v+t
    cout<<"v tranformed = "<<v_transformed.transpose()<<endl;

    // 对于仿射和射影变换,使用 Eigen::Affine3d 和 Eigen::Projective3d 即可,略

    // 四元数
    // 可以直接把AngleAxis赋值给四元数,反之亦然
    Eigen::Quaterniond q = Eigen::Quaterniond ( rotation_vector );
    cout<<"quaternion = \n"<<q.coeffs() <<endl;   // 请注意coeffs的顺序是(x,y,z,w),w为实部,前三者为虚部
    // 也可以把旋转矩阵赋给它
    q = Eigen::Quaterniond ( rotation_matrix );
    cout<<"quaternion = \n"<<q.coeffs() <<endl;
    // 使用四元数旋转一个向量,使用重载的乘法即可
    v_rotated = q*v; // 注意数学上是qvq^{-1}
    cout<<"(1,0,0) after rotation = "<<v_rotated.transpose()<<endl;

    return 0;
}

总结:

  • 旋转矩阵(3×3):Eigen::Matrix3d
  • 旋转向量(3×1):Eigen::AngleAxisd
  • 欧拉角(3×1):Eigen::Vector3d
  • 四元数(4×1):Eigen::Quaterniond
  • 欧氏变换矩阵(4×4):Eigen::Isometry3d
  • 仿射变换(4×4):Eigen::Affine3d
  • 射影变换(4×4):Eigen::Projective3d

每种类型都有单精度和双精度两种数据类型。

编译

1.Ubuntu
如果采用cmake工程,就要编辑CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( useEigen )

# 添加Eigen头文件
include_directories( "/usr/include/eigen3" )

add_executable( eigenMatrix eigenMatrix.cpp )

添加Eigen头文件这里经常出错,因为在很多cmake工程中一般都用find_package(Eigen REQUIRED)语句,然而这种方式找不到Eigen,所以还是用以上方式吧。

然后就是那一套流程了,这里不再赘述。
2.Windows
在VS中添加Eigen的目录后,直接编译即可。

参考资料

《视觉SLAM十四讲》

你可能感兴趣的:(SLAM)