对离散型随机变量期望的理解

在看《程序员的数学2——概率统计》关于离散型随机变量的大数定律解释时,有两个概念一定需要弄明白:

  1. 随机变量的期望
  2. 随机变量结果的平均值

在《Probability and Statistics》这本国外的经典教材第四章第一小节中,强调了随机变量的期望只与随机变量的分布有关系:

Note: The Expectation of X Depends Only on the Distribution of X. Although E(X) is called the expectation of X, it depends only on the distribution of X. Every two random variables that have the same distribution will have the same expectation even if they have nothing to do with each other. For this reason, we shall often refer to the expectation of a distribution even if we do not have in mind a random variable with that distribution.

按照我的理解,随机变量的期望是一个定值。对于离散型的随机变量X,它只与X可能的取值及每个取值的概率有关,即只与X的分布有关系;而随机变量结果的平均值是一个变值。

举个例子,掷骰子时,可能会有1,2,3,4,5,6中结果,每种结果的概率是1/6,那么无论掷多少次,期望都是3.5。而均值取决于其每次投掷的结果已经总的投掷次数。大数定律描述的就是随机变量的期望和其试验结果平均值的关系。

你可能感兴趣的:(数学/概率论)