- 【拥抱AI】如何使用Milvus向量数据库进行数据库检索?
奔跑草-
人工智能人工智能milvus数据库
使用向量数据库进行数据库检索是一种高效的方法,特别是在处理大规模、高维度的数据时。以下是详细的步骤,帮助你理解和实施这一过程:1.准备环境选择向量数据库常见的向量数据库有:Faiss:由FacebookAIResearch开发,适用于大规模向量搜索。Milvus:开源的向量数据库,支持多种索引类型和相似度度量。Elasticsearch:虽然主要是全文搜索引擎,但也支持向量搜索功能。安装和配置根据
- Milvus向量数据库操作教程
2401_85763639
milvus数据库
Milvus是一款专为向量数据设计的数据库,它具备高性能、高可用和易扩展的特点,主要用于处理由深度神经网络和其他机器学习模型生成的大规模嵌入向量[162][165]。以下是Milvus向量数据库的详细解释:定义与用途:Milvus是一个云原生向量数据库,专为海量向量数据的实时召回而设计。它基于FAISS、Annoy、HNSW等向量搜索库构建,主要解决稠密向量相似度检索的问题[163]。核心优势:高
- 向量数据库技术全景
萌之哧哧
数据库
本文深入探讨了向量数据库的基础概念、架构设计及实现技术,详细介绍了HNSW、FAISS和Milvus等关键算法和工具,旨在为高效管理和检索高维向量数据提供全面的技术指南。关注TechLead,复旦博士,分享云服务领域全维度开发技术。拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,复旦机器人智能实验室成员,国家级大学生赛事评审专家,发表多篇SCI核心期刊学术论文,阿里云认证的资深架构师,
- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- Langchain本地知识库部署
MaxCode-1
langchain
本地部署(Docker+LangChain+FAISS)1.概述本地部署LangChain-Chatchat可以为企业提供高效、安全、可控的AI知识库方案。本方案基于Docker、LangChain和FAISS进行本地化部署,适用于企业内部知识库问答、私有化AI应用等场景。2.技术选型2.1LangChainLangChain是一个开源的LLM(大语言模型)应用开发框架,支持多种模型和数据源,适用
- 编译安装PaddleClas@openKylin(失败,安装好后报错缺scikit-learn)
skywalk8163
操作系统人工智能kylinPaddleClas
编译安装前置需求:手工安装swig和faiss-cpupipinstallswigpipinstallfaiss-cpu小技巧,pip编译安装的时候,可以加上--jobs=64来多核编译。注意先升级pip版本:pipinstallpip-Upip3installfaiss-cpu--config-settings="--jobs=64"--global-option="--jobs=4"还有一种方
- 【人工智能时代】- 开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate
xiaoli8748_软件开发
人工智能时代人工智能开源数据库
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。什么是向量数据库?向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到
- 使用FAISS进行高效相似性搜索与向量存储
dagGAIYD
faisspython
技术背景介绍FacebookAISimilaritySearch(FAISS)是一个用于高效相似性搜索和稠密向量聚类的库。它能够在任意大小的向量集合中进行搜索,即使这些集合可能无法完全加载到内存中。FAISS提供了评估与参数调优的支持代码,使得它在处理大型数据集时非常实用。核心原理解析FAISS的核心在于其利用高效的数据结构和算法,如倒排文件和压缩索引,使得大量向量的相似性搜索成为可能。它主要通过
- 使用Faiss进行高效相似度搜索
llzwxh888
faisspython
在现代AI应用中,快速和高效的相似度搜索是至关重要的。Faiss(FacebookAISimilaritySearch)是一个专门用于快速相似度搜索和聚类的库,特别适用于高维向量。本文将介绍如何使用Faiss来进行相似度搜索,并结合Python代码演示其基本用法。什么是Faiss?Faiss是一个由FacebookAIResearch团队开发的开源库,主要用于高维向量的相似性搜索和聚类。Faiss
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Faiss:高效相似性搜索与聚类的利器
网络·魚
大数据faiss
Faiss是一个针对大规模向量集合的相似性搜索库,由FacebookAIResearch开发。它提供了一系列高效的算法和数据结构,用于加速向量之间的相似性搜索,特别是在大规模数据集上。本文将介绍Faiss的原理、核心功能以及如何在实际项目中使用它。Faiss原理:近似最近邻搜索:Faiss的核心功能之一是近似最近邻搜索,它能够高效地在大规模数据集中找到与给定查询向量最相似的向量。这种搜索是近似的,
- 向量数据库对比分析报告
大霸王龙
行业+领域+业务场景=定制人工智能深度学习python
FAISS、Milvus、Weaviate和OpenAIAPI四个工具的对比分析,主要针对是否支持离线、开发难度、debug支持、生态系统以及Python接口等方面。1.FAISS(FacebookAISimilaritySearch)是否支持离线:支持。FAISS是一个离线库,可以部署在本地或服务器上,不需要网络连接。开发难度:中等。FAISS是一个低级别的工具,需要开发者对近似最近邻搜索算法和
- 起底 QAnything 解析 目录与第三方库和工具
路人与大师
人工智能
├─configs│conversation.py│model_config.py│__init__.py│├─connector││__init__.py│││├─database│││__init__.py│││││├─faiss│││faiss_client.py│││__init__.py│││││└─mysql││mysql_client.py││__init__.py│││├─embe
- 【Faiss】构建高效搜索系统 - Faiss向量数据库的搭建
何遇mirror
大数据faiss
目录编辑1.引言2.Faiss简介3.安装与配置3.1在不同操作系统上的安装方法3.1.1Windows3.1.2macOS3.1.3Linux3.2配置开发环境3.2.1使用virtualenv3.2.2使用Anaconda1.引言在当今这个数据爆炸的时代,快速有效地处理海量数据已经成为企业和研究机构面临的重大挑战之一。特别是在计算机视觉、自然语言处理等领域,面对大量的高维向量数据,传统的数据库
- 向量数据库入坑:传统文本检索方式的降维打击,使用 Faiss 实现向量语义检索
soulteary
为了不折腾而去折腾的那些事faiss向量检索语义检索文本检索搜索引擎
在上一篇文章《聊聊来自元宇宙大厂Meta的相似度检索技术Faiss》中,我们有聊到如何快速入门向量检索技术,借助MetaAI(FacebookResearch)出品的faiss实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是
- 【大模型】FAISS向量数据库记录:从基础搭建到实战操作
爱python的王三金
自然语言处理LLMRAGfaiss数据库rag
文章目录文章简介Embedding模型BGE-M3模型亮点FAISS是什么FAISS实战安装faiss加载Embedding模型创建FAISS数据库搜索FAISS数据删除FAISS数据保存、加载FAISS索引总结本人数据分析领域的从业者,拥有专业背景和能力,可以为您的数据采集、数据挖掘和数据分析需求提供支持。期待着能够与您共同探索更多有意义的数据洞见,为您的项目和业务提供数据分析方面的帮助。文章简
- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 向量数据库Faiss的详细介绍和搭建使用教程
大白菜程序猿
运维faiss
一、Faiss简介向量数据库Faiss(FacebookAISimilaritySearch)是由FacebookAI研究院(FAIR)开发的一种高效的相似性搜索和聚类库。Faiss能够快速处理大规模数据,支持在高维空间中进行相似性搜索。它通过将候选向量集封装成一个index数据库,加速检索相似向量的过程,尤其在一些最有用的算法上实现了GPU加速。二、Faiss的安装Faiss支持多种操作系统,包
- 向量数据库 Faiss 的搭建与使用
eqa11
数据库
向量数据库Faiss的搭建与使用一、引言在人工智能和大数据技术飞速发展的今天,向量数据库作为处理高维数据检索的关键技术,越来越受到重视。Faiss,作为由MetaAI(原FacebookAIResearch)开源的高效相似性搜索库,以其卓越的性能和灵活性,成为众多技术选型中的佼佼者。本文将深入探讨Faiss的搭建和使用,旨在为读者提供一个全面而详细的指南。二、Faiss简介与环境搭建1、Faiss
- 【大数据】深入解析向量数据库Faiss:搭建与使用指南
程序者王大川
杂谈kylinfaiss学习数据库ai编程
摘要:本文将介绍向量数据库的概念,重点讲解Faiss这一高性能相似性搜索库。通过分析官网内容,详细阐述Faiss的安装过程及使用方法,帮助读者快速上手并应用于实际项目中。什么是向量数据向量数据是一种数据类型,通常用于数学、物理学、计算机科学和数据分析等领域。在技术术语中,向量数据通常指的是以下几种概念:数学向量:在数学中,向量是一个具有大小和方向的量,可以在平面上或空间中表示为箭头。数学向量可以是
- 详细说明:向量数据库Faiss的搭建与使用
AI逍遥子
faiss
当然,Faiss(FacebookAISimilaritySearch)是一个用来高效地进行相似性搜索和密集向量聚类的库。它能够处理大型数据集,并且在GPU上的性能表现尤为出色。下面详细介绍Faiss的搭建与使用。1.搭建Faiss1.1安装依赖包首先,需要安装Faiss及其依赖包。可以使用如下命令:#如果使用CPU版本pipinstallfaiss-cpu#如果使用GPU版本pipinstall
- 向量数据库Faiss的搭建与使用|Faiss|向量数据库|高效检索|机器学习|大规模数据
concisedistinct
人工智能faiss数据库人工智能机器学习
目录1.Faiss概述1.1Faiss的背景与重要性1.2Faiss的基本概念与特点2.Faiss的安装与环境配置2.1环境要求2.2Faiss的安装2.3验证安装3.Faiss的基本使用3.1创建索引与添加向量3.2执行查询3.3向量的压缩与内存优化4.Faiss的高级功能与优化4.1GPU加速与多GPU支持4.2混合索引与自定义距离度量4.3高维数据的优化在处理高维数据的场景中,快速且高效地进
- 安装faiss环境教程
you_are_my_sunshine*
faiss
文章目录打开环境安装faiss环境检查已安装的环境切换环境至faiss打开环境sourceactivate#打开环境安装faiss环境condacreate-nfaiss_env#安装faiss环境检查已安装的环境condainfo--envs#检查已安装的环境切换环境至faisscondaactivatefaiss_env#切换环境至faiss
- 使用GPT3.5,LangChain,FAISS和python构建一个本地知识库
juhanishen
GPTgpt-3langchainfaisschatbot
本篇文章获得同事刘工的授权刊登。原文发表于2023年6月28日。引言介绍本地知识库的概念和用途在现代信息时代,我们面临着海量的数据和信息,如何有效地管理和利用这些信息成为一项重要的任务。本地知识库是一种基于本地存储的知识管理系统,旨在帮助用户收集、组织和检索大量的知识和信息。它允许用户在本地环境中构建和管理自己的知识资源,以便更高效地进行信息处理和决策。本地知识库通常采用数据库、索引和搜索技术,以
- 海量数据相似数据查找方法(ANN):【高维稀疏向量的相似查找——MinHash, LSH, SimHash】【稠密向量的相似查找——Faiss、Annoy、ScaNN、Hnswlib】
u013250861
#RS/召回层#LLM/数据处理算法
主要分为高维稀疏向量和稠密向量两大方向。高维稀疏向量的相似查找——minhash,lsh,simhash针对高维稀疏数据情况,如何通过哈希技术进行快速进行相似查找。例如,推荐系统中item-user矩阵。如果你有item数量是百万级别,user是千万级别,这个矩阵是十分稀疏的。你如何计算每一个item的TopN相似item呢?同样海量文本场景,文本集合可以看成doc-word稀疏矩阵,如何求解每个
- 自然语言处理(NLP)-第三方库(工具包):Faiss【向量最邻近检索工具】【为稠密向量提供高效相似度搜索】【多种索引构建方式,可根据硬件资源、数据量选择合适方式】【支持十亿级别向量的搜索】
u013250861
机器学习/ML#RS/召回层#LLM/数据处理聚类自然语言处理Faiss
一、Faiss介绍Faiss是FacebookAI团队开源的针对聚类和相似性搜索库,为稠密向量提供高效相似度搜索和聚类,支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库。它包含多种搜索任意大小向量集(备注:向量集大小由RAM内存决定)的算法,以及用于算法评估和参数调整的支持代码。Faiss用C++编写,并提供与Numpy完美衔接的Python接口。除此以外,对一些核心算法提供了GPU实现。相
- 推荐系统的向量检索工具: Annoy & Faiss
我就算饿死也不做程序员
python推荐系统python推荐系统向量检索最邻近搜索
在推荐系统的召回阶段,如YoutubeDNN和DSSM双塔模型,向量的最邻近检索是必不可少的一步。一般的做法不会让模型在线预测召回,而是先离线将向量存储,然后在线上进行向量的最邻近检索,作为模型的召回。例如:离线训练模型后,将item向量存储至某种数据库,然后线上推理时,模型实时计算输出user向量,然后通过Annoy或Faiss进行内积的最邻近检索。这篇文章将介绍两个常用的向量最邻近检索工具:A
- Annoy算法简单介绍
hblg_bobo
算法pythonjava
Annoy算法与Faiss相比,Annoy搜索,速度更快一点,主要目的是建立一个数据结构快速找到任何查询点的最近点。通过牺牲查询准确率来换取查询速度,这个速度比faiss速度还要快。是什么Annoy:最近邻向量搜索,原理/过程算法原理:先构建索引,对于每个二叉树都建立索引,在这里二叉树是随机构造的第一步:先随机找两个点,根据这两个点进行连线,找到垂直平分线,称为超平面。第二步:在切分后的子空间,继
- 向量搜索查询faiss、annoy
学习3人组
faiss
首先介绍annoy:转发空间:https://download.csdn.net/blog/column/10872374/114665212Annoy是高维空间求近似最近邻的一个开源库。Annoy构建一棵二叉树,查询时间为O(logn)。Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分。如图所示,图中灰色线是连接两个点,超平面是加粗的黑线。按照这个方法在每个子集上
- bert+np.memap+faiss文本相似度匹配 topN
木下瞳
NLP机器学习深度学习模型bertfaiss人工智能
目录任务代码结果说明任务使用bert-base-chinese预训练模型将文本数据向量化后,使用np.memap进行保存,再使用faiss进行相似度匹配出每个文本与它最相似的topN此篇文章使用了地址数据,目的是为了跑通这个流程,数据可以自己构建模型下载:bert预训练模型下载-CSDN博客np.memap:是NumPy库中的一种内存映射文件(Memory-MappedFile)对象,它允许你将硬
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f