- 霍夫变换(Hough Transform)算法原来详解和纯C++代码实现以及OpenCV中的使用示例
点云SLAM
算法图形图像处理算法opencv图像处理与计算机视觉算法直线提取检测目标检测霍夫变换算法
霍夫变换(HoughTransform)是一种经典的图像处理与计算机视觉算法,广泛用于检测图像中的几何形状,例如直线、圆、椭圆等。其核心思想是将图像空间中的“点”映射到参数空间中的“曲线”,从而将形状检测问题转化为参数空间中的峰值检测问题。一、霍夫变换基本思想输入:边缘图像(如经过Canny边缘检测)输出:一组满足几何模型的形状(如直线、圆)关键思想:图像空间中的一个点→参数空间中的一个曲线参数空
- 数字孪生技术为UI前端注入新活力:实现产品设计的沉浸式体验
ui设计前端开发老司机
ui
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:从“平面交互”到“沉浸体验”的UI革命当用户在电商APP中翻看3D家具模型却无法感知其与自家客厅的匹配度,当设计师在2D屏幕上绘制汽车内饰却难以预判实际乘坐体验——传统UI设计的“平面化、静态化、割裂感”
- 【证明】对极几何:本质矩阵内在性质
Powerful_QI
slam线性代数矩阵
--这是目录--1.本质矩阵内在性质表述2.预备知识2.1线性代数基础2.1.1奇异值与特征值的关系2.1.2矩阵加减单位阵后特征值的变化2.2引理:一个常用的矩阵变换3.证明1.本质矩阵内在性质表述 本质矩阵(EssentialMatrix)EEE是一个3阶方阵,满足E=t∧RE=t^{\land}RE=t∧R其中RRR为旋转矩阵,ttt为平移量,t∧t^{\land}t∧运算定义如下(参考了
- 线性代数同济教材每一部分的现实意义
ZhuBin365
其它算法
一、行列式(Determinants)的现实意义:不仅仅是数字,而是“尺度”和“特性”行列式虽然计算结果是一个数值,但它绝不是一个孤立的数字,它在现实世界中代表着“尺度”和“特性”的重要信息:现实意义核心:“衡量变化的能力”和“判定系统特性”“尺度”:衡量体积/面积的缩放比例:在现实世界中,很多变换都会改变物体的形状和大小。行列式就像一个“尺度”,衡量了线性变换对面积(二维)或体积(三维及以上)的
- Android 系统默认代码,如何屏蔽相册分享功能
Android系统默认代码,如何屏蔽相册分享功能开发云-一站式云服务平台diff--gita/packages/apps/Gallery2/src/com/android/gallery3d/app/GalleryActionBar.javab/packages/apps/Gallery2/src/com/android/gallery3d/app/GalleryActionBar.javaind
- 使用NVIDIA NeRF将2D图像转换为逼真的3D模型(Python)
ByteWhiz
3dpython计算机视觉Python
使用NVIDIANeRF将2D图像转换为逼真的3D模型(Python)NeuralRadianceFields(NeRF)是一种强大的方法,可以将2D图像转换为逼真的3D模型。它使用神经网络来建模场景的辐射场,并通过渲染多个视角的图像来重建3D模型。在本文中,我们将使用Python和NVIDIANeRF库来实现这一过程。首先,我们需要安装所需的库。我们可以通过以下命令使用pip安装NVIDIANe
- OpenCV图像数据处理:convertTo,normalize和scaleAdd
luofeiju
OpenCV函数实战opencv
在OpenCV图像处理的世界里,有几个函数进行一些基本数据变换:cv::convertTo():类型转换与线性缩放;cv::normalize():归一化处理;cv::scaleAdd():加权叠加运算。cv::addWeighted():与scaleAdd相似,进行加权叠加运算;一、cv::convertTo():线性变换+数据类型转换voidcv::Mat::convertTo(OutputA
- fps透视基础-d3d绘制-绘制文字-绘制方框-绘制连线
程序员陈子青
逆向工程DirectXfps透视画方框画文字
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓#include#include#pragmacomment(lib,"d3d9.lib")#pragmacomment(lib,"d3dx9.lib")staticLPDIRECT3D9g_pD3D=NULL;staticD3DPRESENT_PARAMETERSg_d3dpp={};staticLPDIRECT3DDEVICE9g_pd3dDevice=NUL
- 任鸟飞FPS类型游戏绘制,骨骼,u3d,UE4和游戏安全,反外挂研究 (三)
任鸟飞逆向~
FPSC语言网络安全3d游戏ue4
书接上文,我们非矩阵的方式绘制是没有那么的精确的在学习矩阵之前,我们先来了解下绘制的几种方法绘制的几种方法和反外挂建议第一种hookd3d/opengl优点:不闪,代码简单缺点:非常容易被检测第二种窗口上自行绘制,但是会闪优缺点适中第三种自建透明窗口,覆盖游戏窗口,透明窗口上绘制优点:稳定确定:代码复杂,会闪反外挂:无非就是针对外挂使用的函数进行检测深入学习矩阵对象的世界坐标列向量xyzw(w为了
- 资源分享-FPS, 矩阵, 骨骼, 绘制, 自瞄, U3D, UE4逆向辅助实战视频教程
小零羊
矩阵3due4
文章底部获取资源教程概述本视频教程专为游戏开发者和安全研究人员设计,涵盖FPS游戏设计、矩阵运算、骨骼绘制、自瞄算法、U3D和UE4逆向辅助等实战内容。通过102节详细视频教程,您将掌握从基础到高级的游戏开发与安全防护技能。教程内容1.FPS类型游戏的设计研究和游戏安全,反外挂研究2.二维向量和平面距离3.atan2和tan4.三维向量和空间距离5.补充向量乘法6.矩阵和矩阵的运算7.矩阵的特性8
- 【JMeter】接口加密
QA媛_
JMeterjmeter
文章目录哈希对称加密非对称加密JMeter实现加密调用函数示例加密是信息安全的重要手段,常用在身份认证、访问控制等安全场景。原理:对原有内容的特殊变换,从而隐藏内容,无法伪造内容。常见的算法:哈希对称加密非对称加密哈希优点:速度快缺点:无法还原场景:签名、内容校验著名算法:MD5、SHA-512对称加密优点:速度相当快,可以还原,加密密钥和解密密钥相同(逻辑简单)缺点:安全系数不高,解密者完全可以
- Python 取证学习指南第二版(一)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/46c71d4b3d6fceaba506eebc55284aa5译者:飞龙协议:CCBY-NC-SA4.0前言在编写《学习Python取证》一书时,我们有一个目标:以一种方式教授Python在取证中的应用,使得没有编程经验的读者可以立即跟随并开发出可以用于案件工作中的实用代码。但这并不意味着本书仅适合Python新手;在整个过程中,我们会逐步让读者
- Python 取证学习指南第二版(三)
原文:annas-archive.org/md5/46c71d4b3d6fceaba506eebc55284aa5译者:飞龙协议:CCBY-NC-SA4.0第七章:模糊哈希哈希是DFIR中最常见的处理过程之一。这个过程允许我们总结文件内容,并分配一个代表文件内容的独特且可重复的签名。我们通常使用MD5、SHA1和SHA256等算法对文件和内容进行哈希。这些哈希算法非常有价值,因为我们可以用它们进行
- shell脚本实现Hive库表迁移
docsz
hiveLinuxshell
1、获取hive所有库的建表语句#获取hive所有库的建表语句#!/bin/bashmkdir-p~/hive/tables/tablesDDL#获取库名hive-e"showdatabases;">~/hive/databases.txtsed-i'1,3d'~/hive/databases.txtsed-i'$d'~/hive/databases.txtcat~/hive/databases.
- 【EGSR2025】材质+扩散模型+神经网络相关论文整理随笔(四)
Superstarimage
文献随笔材质神经网络人工智能扩散模型
AnevaluationofSVBRDFPredictionfromGenerativeImageModelsforAppearanceModelingof3DScenes输入3D场景的几何和一张参考图像,通过扩散模型和SVBRDF预测器获取多视角的材质maps,这些maps最终合并成场景的纹理地图集,并支持在任意视角、任意光照条件下进行重新渲染。样例图如下:在当前时代的技术背景下,生成与几何匹配
- 从原理到实战:ISP(图像信号处理器)深度解析与应用指南
从原理到实战:ISP(图像信号处理器)深度解析与应用指南摘要本文系统解析ISP(ImageSignalProcessor,图像信号处理器)的核心功能,详细拆解其工作流程(RAW处理→黑电平校正→AWB→3DNR→Defog→Gamma),深入解读关键参数(吞吐量、WDR类型、低照度性能)的技术意义,并详解寄存器表与在线调试工具的配置方法。通过表格对比、分点解析等方式,从基础原理到工程实践,覆盖IS
- Halcon算子--shape_trans,用于变换区域的形状
X-Vision
函数原型:shape_trans(Region:RegionTrans:Type:)shape_trans仍然是区域,smallest_rectangle1可以获得四个角的坐标函数作用:变换区域的形状参数列表:Region(in):被变换的区域RegionTrans(out):变换后的区域Type(in):变换类型参数Type的可选项解释如下:convex:凸包性ellipse:与输入区域有相同的
- 使用python的open3d库读取Bin格式点云并可视化
Python有很多库都可以处理点云,比如Python-PCL、Open3D等等。Python-PCL库已经很久没有维护了,而且安装极其麻烦!Open3D是由intel发布的3D点云可视化库,点云可视化和渲染都很方便,重要的是安装方便!!!1.安装PythonOpen3D环境:Ubuntu16.04pipinstallopen3d==0.9.0.0注意:open3d0.9.0.0只支持python2
- 李群与李代数2:李代数求导和李群扰动模型
龙焰智能
SLAM数学基础自动驾驶高等数学李群李代数BCH公式微分模型扰动模型相似变换群
李群与李代数2:李代数求导和李群扰动模型1.整体误差最小化引出求导问题2.BCH公式与近似形式2.1BCH公式2.2BCH线性近似2.3BCH近似的意义3.微分模型——李代数求导4.扰动模型求导(左乘)4.1SO(3)上的扰动模型求导4.2SE(3)上的扰动模型求导4.3伴随性质5.相似变换群相关5.1相似变换群Sim(3)Sim(3)Sim(3)5.2李代数sim(3)\mathfrak{sim
- window显示驱动开发—XR 格式的强制转换功能
程序员王马
windows图形显示驱动开发xr
DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM格式是DXGI_FORMAT_R10G10B10A2_TYPELESS系列的成员。因此,应用程序可以通过API级别的“视图”概念将DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM格式强制转换为该系列的任何其他成员。此过程是应用程序呈现到资源的预期方式。具体而言,Direct3D运行时只能通过驱动
- Docker部署MySQL镜像
慕木兮人可
dockermysqlspringbootECS服务器后端
1.拉取镜像#拉取指定版本的MySQL镜像dockerpullmysql:8.02.创建挂载目录#自己创建好如下三个文件夹路径任意[root@iZuf6aigs7rxe6f6oifq7vZmysql]#ll总用量12drwxr-xr-x2rootroot40967月710:25configdrwxr-xr-x2rootroot40966月2616:43datadrwxr-xr-x2rootroot
- 3D Gaussian Spaltting代码复现全流程与代码结构解读
一、代码复现流程以下部分将详细介绍3DGaussiansplatting的代码复现流程(在ubuntu18.04上训练模型,在windows10上使用SIBR_viewers查看)1、首先在GitHub-graphdeco-inria/gaussian-splatting:Originalreferenceimplementationof"3DGaussianSplattingforReal-Ti
- 语音信号基础篇1-预加重(Pre-emphasis)
沐黎~
信号与系统语音识别人工智能
预加重就是对语音信号的高频进行补偿,语音信号90%能量集中在有效带宽低频分量上,高频分量频谱(一般我们用其幅度谱,通俗将就是频谱的模长或者绝对值长度)较小,我们让它变大一定,占比多,增强其高频分量。预加重原理也非常简单,其时域表达式非常简单,如下式子:公式中:一般取0.97时域看着就简单后一个减去前一个,看不出有什么规律,我们对其进行z变换,可得:合并同类项,可得:自变量为z,我们画出z变化后的频
- 探索三维世界:Qt+assimp+OpenGL三维模型解析与显示项目推荐
杨焕月Great
探索三维世界:Qt+assimp+OpenGL三维模型解析与显示项目推荐【下载地址】QtassimpOpenGL三维模型解析与显示本资源文件提供了一个基于Qt、assimp和OpenGL的三维模型解析与显示解决方案。通过assimp库,您可以轻松解析多种格式的三维模型文件(如3ds、obj等),并利用QOpenGLWidget和QOpenGLFunctions在Qt应用程序中进行模型的绘制和显示。
- 什么是点云?怎么实现点云扫描?
zhongqu_3dnest
点云点云扫描点云建模三维空间激光扫描技术
什么是点云?点云是一种数据集,其中包含大量代表物体表面几何形状的点。这些点通过测量仪器获取,通常使用三维坐标测量机、三维激光扫描仪或照相式扫描仪等设备。每个点由X、Y、Z坐标和一个强度值组成,这个强度值通常反映了物体表面反射率返回信号的强度。当这些点被组合在一起时,就形成了一个点云,即空间中代表3D形状或对象的数据点集合。点云是3D扫描和3D建模过程中的直接数字输出,可以用于创建高度精确的3D模型
- BEV开山之作Lift-Splat-Shot (LSS) 深度详解
shuaishuaideyuzi
3D视觉入门人工智能pythonpytorch3d计算机视觉
在自动驾驶感知系统中,将多视角图像转换为鸟瞰图(BEV)是一个关键步骤。Lift-Splat-Shot(LSS)是一种高效的视角转换方法,能够将透视视图特征转换为BEV空间,从而实现更准确的3D物体检测。本文将详细解析LSS的工作原理、技术细节及其应用场景。一、LSS概述LSS(Lift-Splat-Shot)是由PhilippHenzler等人于2021年提出的一种用于自动驾驶感知系统的视角转换
- centos 配置multipaths存储多路径
不仙520
随笔centoslinux运维
一、安装multipaths软件1.安装程序yuminstalldevice-mapper-multipath-y2、将多路径软件添加至内核模块中modprobedm-multipathmodprobedm-round-robin3、检查内核添加情况lsmod|grepmultipath显示如下即可:dm_multipath274273dm_round_robin,dm_service_timed
- 3D 可视化技术开启污水治理全新发展阶段
广州华锐视点
3d
3D可视化大屏展示技术在污水厂的应用,已然开启了污水处理的全新篇章。它不仅为污水厂解决了当下管理和展示的难题,更如同一座灯塔,照亮了未来污水处理领域的发展道路。随着科技的持续进步,3D可视化大屏展示技术必将迎来更加辉煌的发展。一方面,其与人工智能、大数据、物联网等前沿技术的融合将愈发紧密。借助人工智能算法,大屏系统将具备更强大的自主学习和分析能力,能够根据实时数据和历史经验,自动优化污水处理工艺参
- 智慧仓储数字孪生有哪些优势?VR石化工厂多少钱强荐广州华锐互动
广州华锐视点
数字孪生
仓储物流是各行业发展的核心,尤其是工业、电子商务、贸易等对仓储的需求很大,仓储管理和运营成为行业关注的焦点。在传统的仓库管理中,将相对分散的系统组合起来进行管理,分散程度高,无法实现全面智能化。然而,仓库的数字孪生完全颠覆了传统的管理模式,通过数字孪生技术实现三维映射,使常规存储系统的状态可以在大屏幕上以更加立体和直观的方式看到。 广州华锐互动数字孪生系统基于生产线真实数据,综合利用3D、虚
- 博物馆元宇宙:重塑文化体验与教育的新维度
2401_89984614
人工智能
在科技日新月异的今天,虚拟现实(VR)、增强现实(AR)以及人工智能(AI)等前沿技术正深刻改变着我们的生活,包括我们如何接触和理解文化遗产。博物馆元宇宙,作为这一变革浪潮中的先锋概念,正逐步将传统的实体博物馆体验带入一个全新的数字化时代。本文旨在探讨博物馆元宇宙的内涵、其对文化传播与教育的影响,以及面临的挑战与未来展望。###一、博物馆元宇宙的概念博物馆元宇宙是指利用VR、AR、3D建模、AI等
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟