SIFT/SURF/ FAST / BREIF / ORB特征

ORB特征,Oriented FAST and Rotated BRIEF
具有局部不变性的特征,从它的名字中可以看出它是对FAST特征点与BREIF特征描述子的一种结合与改进,这个算法是在2011年一篇名为“ORB:An Efficient Alternative to SIFT or SURF”的文章中提出。就像文章题目所写一样,ORB是除了SIFT与SURF外一个很好的选择,而且它有很高的效率,最重要的一点是它是免费的,SIFT与SURF都是有专利的,你如果在商业软件中使用,需要购买许可。


FAST算法原理,Features From Accelerated Segment Test
有很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测),可以根据图像局部的自相关函数来求得Harris角点(Harris角点),后面又提到了两种十分优秀的特征点及它们的描述方法SIFT特征与SURF特征。SURF特征算是为了提高运算效率对SIFT特征的一种近似,虽然在有些实验环境中已经达到了实时,但是我们实践工程应用中,特征点的提取与匹配只是整个应用算法中的一部分,所以我们对于特征点的提取必须有更高的要求,从这一点来看前面介绍的的那些特征点方法都不可取。

      为了解决这个问题,Edward Rosten和Tom Drummond在2006年发表的“Machine learning for high-speed corner detection[1]”文章中提出了一种FAST特征,并在2010年对这篇论文作了小幅度的修改后重新发表[2]。FAST的全称为Features From Accelerated Segment Test。Rosten等人将FAST角点定义为:若某像素点与其周围领域内足够多的像素点处于不同的区域,则该像素点可能为角点。也就是某些属性与众不同,考虑灰度图像,即若该点的灰度值比其周围领域内足够多的像素点的灰度值大或者小,则该点可能为角点。

BRIEF的基本原理,Binary Robust Independent Elementary Features
我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间。类
似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间。如果一幅图像中有1000个特征点(不
要惊讶,这是很正常的事),那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用,尤其
是嵌入式的应用,这样的特征描述子显然是不可行的。而且,越占有越大的空间,意味着越长的匹配时间。
但是实际上SFIT或SURF的特征描述子中,并不是所有维都在匹配中有着实质性的作用。我们可以用PCA、LDA等特征降维的方法来压缩特征描述子的维度。还有一些算法,例如LSH,将SIFT的特征描述子转换为一个二值的码串,然
后这个码串用汉明距离进行特征点之间的匹配。这种方法将大大提高特征之间的匹配,因为汉明距离的计算可以用
异或操作然后计算二进制位数来实现,在现代计算机结构中很方便。下面来们提取一种二值码串的特征描述子。

BRIEF[1]应运而生,它提供了一种计算二值串的捷径,而并不需要去计算一个类似于SIFT的特征描述子。它需要先平滑图像,然后在特征点周围选择一个Patch,在这个Patch内通过一种选定的方法来挑选出来nd个点对。然后对于每一个点对(p,q),我们来比较这两个点的亮度值,如果I(p)>I(q)则这个点对生成了二值串中一个的值为1,如果I(p)
对于nd的选择,我们可以设置为128,256或512,这三种参数在OpenCV中都有提供,但是OpenCV中默认的参数是256,这种情况下,非匹配点的汉明距离呈现均值为128比特征的高斯分布。一旦维数选定了,我们就可以用汉明距离来匹配这些描述子了。

值得注意的是,对于BRIEF,它仅仅是一种特征描述符,它不提供提取特征点的方法。所以,如果你必须使一种特征点定位的方法,如FAST、SIFT、SURF等。这里,我们将使用CenSurE方法来提取关键点,对BRIEF来说,CenSurE的表现比SURF特征点稍好一些。

总体来说,BRIEF是一个效率很高的提取特征描述子的方法,同时,它有着很好的识别率,但当图像发生很大的平面内的旋转。

SIFT(Scale-invariant feature transform)

是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果。
我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间


SIFT特征匹配

编辑
SIFT特征匹配主要包括2个阶段: [1]  
第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。
第二阶段:SIFT特征向量的匹配。
SIFT特征的生成一般包括以下几个步骤:
1. 构建 尺度空间,检测极值点,获得尺度不变性。
SIFT/SURF/ FAST / BREIF / ORB特征_第1张图片 图1 粗检特征点
2. 特征点过滤并进行精确定位。
SIFT/SURF/ FAST / BREIF / ORB特征_第2张图片
3. 为特征点分配方向值。
SIFT/SURF/ FAST / BREIF / ORB特征_第3张图片
4. 生成特征描述子。
以特征点为中心取16×16的邻域作为采样窗口,将采样点与特征点的相对方向通过高斯加权后归入包含8个bin的方向直方图,最后获得4×4×8的128维特征描述子。示意图如下:
SIFT/SURF/ FAST / BREIF / ORB特征_第4张图片
当两幅图像的SIFT特征向量生成以后,下一步就可以采用关键点特征向量的 欧式距离来作为两幅图像中关键点的相似性判定度量。取图1的某个关键点,通过遍历找到图像2中的距离最近的两个关键点。在这两个关键点中,如果最近距离除以次近距离小于某个阈值,则判定为一对匹配点


surf, Speeded-Up Robust Features.——Herbert Bay

简单来说SURF是SIFT算法的加速版
我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间。类
似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间。
计算机视觉中,引入尺度不变的特征,主要的思想是每个检测到的特征点都伴随着对应的尺寸因子。当我们想匹配不同图像时,经常会遇到图像尺度不同的问题,不同图像中特征点的距离变得不同,物体变成不同的尺寸,如果我们通过修正特征点的大小,就会造成强度不匹配。为了解决这个问题,提出一个尺度不变的SURF特征检测,在计算特征点的时候把尺度因素加入之中。SURF与SIFT算法相似,SIFT算法比较稳定,检测特征点更多,但是复杂度较高,而SURF要运算简单,效率高,运算时间短一点

你可能感兴趣的:(computer,vision)