- 综述论文“A Survey of Zero-Shot Learning: Settings, Methods, and Applications”
硅谷秋水
机器学习机器学习神经网络深度学习
该零样本学习综述,发表于ACMTrans.Intell.Syst.Technol.10,2,Article13(January2019)摘要:大多数机器学习方法着重于对已经在训练中看到其类别的实例进行分类。实际上,许多应用程序需要对实例进行分类,而这些实例的类以前没有见过。零样本学习(Zero-ShotLearning)是一种强大而有前途的学习范例,其中训练实例涵盖的类别与想分类的类别是不相交的。
- 【小贪】项目实战——Zero-shot根据文字提示分割出图片目标掩码
贪钱算法还我头发
#DeepLearning#ComputerVisionAI目标检测深度学习python语义分割Zero-shot
目标描述给定RGB视频或图片,目标是分割出图像中的指定目标掩码。我们需要复现两个Zero-shot的开源项目,分别为IDEA研究院的GroundingDINO和Facebook的SAM。首先使用目标检测方法GroundingDINO,输入想检测目标的文字提示,可以获得目标的anchorbox。将上一步获得的box信息作为SAM的提示,分割出目标mask。具体效果如下(测试数据来自VolumeDef
- Zero-Shot Image Classification总结
夏日小光
1任务说明现有的benchmark通过ImageNet-1k上预训练的Res101从已知类的训练集提取feature或者featuremap,然后对每一个类引入一个语义标签,可能是属性标签(attributelabel)、或者描述标签(sentenceembedding)等。对于某个类的属性标签(向量形式),每个维度表示一种属性,该维度下的取值表示这个属性在该类别中存在的可能性,值得注意的是ben
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- 【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
Bigcrab__
神经网络Tensorflowchatgpt人工智能深度学习
文章目录介绍ChatIEEntity-RelationTripleExtration(RE)NamedEntityRecognition(NER)EventExtraction(EE)实验结果结论论文:Zero-ShotInformationExtractionviaChattingwithChatGPT作者:XiangWei,XingyuCui,NingCheng,XiaobinWang,Xin
- ICLR 2023#Learning to Compose Soft Prompts for Compositional Zero-Shot Learning
神拳小江南阿
CZSLsoftprompt深度学习
组合零样本学习(CZSL)中SoftPrompt相关工作汇总(一)文章目录组合零样本学习(CZSL)中SoftPrompt相关工作汇总(一)ICLR2023#LearningtoComposeSoftPromptsforCompositionalZero-ShotLearningIntroductionRelatedworkpromptParameter-efficientlearningPrel
- 【阅读笔记】Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs-2018
一只瓜皮呀
零样本学习图神经网络知识图谱深度学习机器学习
Abstract我们考虑零样本识别问题:仅利用类别的单词嵌入及其与其他类别的关系来学习具有零训练示例的类别的视觉分类器,并提供视觉数据。处理陌生或新类的关键是将从熟悉类中获得的知识转移到陌生类的描述中。在本文中,我们基于最近引入的图卷积网络(GCN),提出了一种同时使用语义嵌入和类别关系来预测分类器的方法。对于一个已习得的知识图(KG),我们的方法将每个节点(表示视觉类别)作为输入语义嵌入。经过一
- huggingface pipeline零训练样本分类Zero-Shot Classification的实现
hehui0921
huggingface分类python数据挖掘
1:默认的model。fromhuggingface_hub.hf_apiimportHfFolderHfFolder.save_token('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')fromtransformersimportMBartForConditionalGeneration,MBart50TokenizerFastfromtransformersi
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 【EAI 013】BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
datamonday
具身智能(EmbodiedAI)具身智能人工智能模仿学习BC-Z遥操作数据收集
论文标题:BC-Z:Zero-ShotTaskGeneralizationwithRoboticImitationLearning论文作者:EricJang,AlexIrpan,MohiKhansari,DanielKappler,FrederikEbert,CoreyLynch,SergeyLevine,ChelseaFinn论文原文:https://arxiv.org/abs/2202.020
- CLIP 对比预训练 + 文字图像相似度:离奇调查,如何训练视觉大模型?
Debroon
医学大模型:健康长寿#深度学习深度学习
CLIP:如何训练视觉大模型?对比预训练图像编码器文本编码器最大的亮点:zero-shot图像分类总结CLIP论文地址:https://arxiv.org/pdf/2103.00020.pdfCLIP=对比学习+预训练+文字图像相似度。对比预训练传统方法训练视觉模型的方式通常是使用有监督学习方法,需要收集大量图像和对应标签:CLIP采用了一种不需要人工大量标记数据的自监督学习方法。CLIP模型是一
- 论文阅读-Examining Zero-Shot Vulnerability Repair with Large Language Models
Che_Che_
论文阅读语言模型人工智能
1.本文主旨:这篇论文探讨了使用大型语言模型(LLM)进行零射击漏洞修复的方法。人类开发人员编写的代码可能存在网络安全漏洞,新兴的智能代码补全工具是否能帮助修复这些漏洞呢?在本文中,作者研究了大型语言模型(如OpenAI的Codex和AI21的JurassicJ-1)在零射击漏洞修复中的使用。他们研究了如何设计提示来引导LLM生成不安全代码的修复版本,这由于自然语言在语义和句法上有很多种表达方式而
- InstantID: Zero-shot Identity-Preserving Generation in Seconds
猛码Memmat
rob-agent/aigc图像生成深度学习计算机视觉
文章目录IntroductionMainReference记录由国内首创的一个好玩的小项目,图像生成领域的新进展。但我希望现阶段计算机视觉领域的研究能更聚焦在语义分割和三维视觉上,这样能更方便与机器人等产品和工业实体结合。IntroductionInstantID是一个基于扩散模型的图像生成解决方案,能实现从单一参考图像到多样化风格化写真的快速生成。用户只需上传一张自拍,20秒就能得到定制版AI写
- 【论文阅读笔记】InstantID : Zero-shot Identity-Preserving Generation in Seconds
LuH1124
论文阅读笔记图像编辑文生图论文阅读文生图扩散模型人脸识别
InstantID:秒级零样本身份保持生成理解摘要Introduction贡献RelatedWorkText-to-imageDiffusionModelsSubject-drivenImageGenerationIDPreservingImageGenerationMethod实验定性实验消融实验与先前方法的对比富有创意的更多任务新视角合成身份插值多身份区域控制合成结论和未来工作project:
- Revisiting Zero-Shot Abstractive Summarization in the Era of Large Language Models
UnknownBody
LLM语言模型人工智能自然语言处理
本文是LLM系列文章,针对《RevisitingZero-ShotAbstractiveSummarizationintheEraofLargeLanguageModelsfromthePerspectiveofPositionBias》的翻译。从位置偏差看大型语言模型时代零样本抽象概括摘要1引言2相关工作3提出的方法4结果5讨论6结论摘要我们通过测量位置偏差来表征和研究大型语言模型(LLM)中的
- En-Compactness:Self-Distillation Embedding&Contrastive Generation forGeneralized Zero-Shot Learning
computer_vision_chen
人工智能
1.引言基于大量标记数据的图像分类任务[6,16,23]由于深度学习的进步取得了巨大的进展[13,21,55]。然而,深度模型对数据的强烈依赖性使其在某些类别缺乏或甚至没有标记数据的情况下表现不佳[47]。零样本学习(ZSL)[24,35]被提出来解决这一数据缺失问题,通过识别来自未见过类别的对象。首先,它们在已见过的类别上学习分类模型,这些类别提供了训练样本,然后使用类别级别的语义描述符[10,
- 《Towards Robust Monocular Depth Estimation:Mixing Datasets for Zero-shot Cross-dataset Transfer》论文笔记
m_buddy
#DepthEstimationMiDaS深度估计
参考代码:MiDaS1.概述导读:这篇文章提出了一种监督的深度估计方法,其中使用一些很有价值的策略使得最后深度估计的结果具有较大提升。具体来讲文章的策略可以归纳为:1)使用多个深度数据集(各自拥有不同的scale和shift属性)加入进行训练,增大数据量与实现场景的互补;2)提出了一种scale-shiftinvariable的loss用于去监督深度的回归过程,从而使得可以更加有效使用现有数据;3
- CVPR 2023: CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
结构化文摘
sketchmacosui
我们使用以下6个分类标准对本文的研究选题进行分析:1.任务类型:图像检索:最常见任务,目标是检索与给定草图相似的图像。例如:[1,2,3,4,5,6,7,8,9,14,16,30,35,42,43,44,53,58,59,61,62,64,65,67,68,72,73]图像生成:相反,根据草图生成图像。例如:[11,33]目标检测:基于草图识别图像中的特定目标。例如:[13]2.输入模式:仅草图:
- SPOTTING LLMS WITH BINOCULARS: ZERO-SHOT DETECTION OF MACHINE-GENERATED TEXT
UnknownBody
LLM人工智能语言模型
本文是LLM系列文章,针对《SPOTTINGLLMSWITHBINOCULARS:ZERO-SHOTDETECTIONOFMACHINE-GENERATEDTEXT》的翻译。Binoculars定位LLMS:机器生成文本的零样本检测摘要1引言2LLM检测的历程3Binoculars:如何工作的4准确的零样本检测5可靠性6讨论与局限性摘要检测现代大型语言模型生成的文本被认为是困难的,因为LLM和人类
- 太通透了!大模型接入业务系统的最佳实践来了
机器学习社区
大模型数据库大模型模型微调prompt检索增强生成
文章目录一、背景二、业务系统接入大模型的三种方式用通俗易懂的方式讲解系列技术交流三、直接PROMPT(提示语)方式接入PROMPT的常用技巧Zero-Shot,One-Shot,Few-Shot链式思维任务分解如何在PROMPT提示语中嵌入业务知识四、通过RAG(检索增强)方式接入RAG的实现RAG的流程知识检索如何实现业务接入RAG检索的例子五、通过Fine-tuning(微调训练)接入微调训练
- Paper Reading: Metric3D Towards Zero-shot Metric 3D Prediction from A Single Image
竹底蜉蝣
PaperReading3d数码相机
Metric3DTowardsZero-shotMetric3DPredictionfromASingleImage论文链接开源项目一句话总结:作者提出了一个规范相机空间变换模块,可以将图像映射到规范空间里预测深度,然后再将深度预测图通过去规范变换恢复到真实尺度,从而达到单目真实深度预测的目的。Metric指的是真实世界中的度量值(XX米这种),不是相对的。由于相机参数不同,人们很难从单张图像中得
- CVPR2021佳作 | One-Shot都嫌多,Zero-Shot实例样本分割
计算机视觉研究院
计算机视觉机器学习人工智能深度学习编程语言
欢迎关注“计算机视觉研究院”计算机视觉研究院专栏作者:Edison_G给一个包含了未知种类多个实体的没训练过的新样本(thequeryimage),如何检测以及分割所有这些实例???长按扫描二维码关注我们一、分割回顾实例分割(InstanceSegmentation)实例分割(InstanceSegmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(SemanticSegme
- Motion-Attentive Transition for Zero-Shot Video Object Segmentation(2020 AAAI)
行走江湖要用艺名
VOS
Motion-AttentiveTransitionforZero-ShotVideoObjectSegmentationIntroductionProposedMethodNetworkOverviewMATSA:AT:SSABARImplementationDetailsTrainingLossTraingingSettingsRuntimeExperimentsAblationStudyRe
- [2019CVPR论文笔记]Doodle to Search Practical Zero-Shot Sketch-based Image Retrieval
qq_44932092
CVPR2019图像检索图像检索CVPR2019深度学习few-shot
摘要文章地址:http[https://arxiv.org/pdf/1904.03451v1.pdf]在本文中,我们研究了基于零样本的草图图像检索(ZS-SBIR)的问题,其中人类草图被用作查询以从不可见的类别中检索照片。我们通过提出一种新颖的ZS-SBIR场景来进一步推进现有技术,该场景代表了其实际应用中的一步。新设置独特地认识到实际ZS-SBIR的两个重要但经常被忽视的挑战,(1)业余草图和照
- 【零样本草图检索】Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval
x124612
Zero-ShotSketch
Motivationssketch的数量和种类都很少,所以发展ZS-SBIR。而存在三个问题:sketch与image的domaingap;sketch的高度抽象;ZSL中从seenclass到unseenclass的语义迁移。需要合适的数据集能够包括上述挑战。Contributions1、发布新数据集QuickDraw-Extended。首先,数据集能模拟sketch与image之间的差距(比S
- Doodle to Search_ Practical Zero-Shot Sketch-Based Image Retrieval
HYY233
文献阅读
DoodletoSearch_PracticalZero-ShotSketch-BasedImageRetrievalSounakDey∗,PauRiba∗,AnjanDutta,JosepLlados´ComputerVisonCenter,UAB,Spain(西班牙,巴塞罗那大学,计算机视觉中心)Yi-ZheSongSketchX,CVSSP,UniversityofSurrey,UK(英国萨
- 105、Zero-1-to-3: Zero-shot One Image to 3D Object
C--G
#3D重建3d
简介官网 使用合成数据集来学习相对摄像机视点的控制,这允许在指定的摄像机变换下生成相同对象的新图像,用于从单个图像进行三维重建的任务。实现流程 输入图像x∈RH×W×3x\in\R^{H\timesW\times3}x∈RH×W×3,所需视点的相对摄像机旋转和平移R∈R3×3,T∈R3R\in\R^{3\times3},T\in\R^3R∈R3×3,T∈R3,合成视点图像的函数公式表示为:难点:尽
- Whisper: openAI开源准确率最高的通用语言语音识别
智慧医疗探索者
音视频处理whisper语音识别人工智能
简介我们研究了仅通过预测大量互联网音频录音的语音处理系统的能力。当扩大到68万小时的多语言和多任务监督时,生成的模型可以很好地泛化到标准基准,而且通常可以与之前的全监督结果相竞争,但在zero-shot识别设置中,无需进行任何微调。与人类相比,这些模型接近他们的准确性和鲁棒性。我们正在发布模型和推理代码,以便为进一步的鲁棒性语音处理工作提供基础。GitHub:https://github.com/
- DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读
GCTTTTTT
知识图谱论文论文阅读知识图谱人工智能迁移学习机器学习
文章目录摘要1.问题的提出引出当前研究的不足与问题属性不平衡问题属性共现问题解决方案2.数据集和模型构建数据集传统的零样本学习范式v.s.DUET学习范式DUET模型总览属性级别对比学习==正负样本解释:==3.结果分析VIT-basedvisiontransformerencoder.消融研究消融研究解释4.结论与启示结论总结启发PLMs的潜在语义知识引入多模态,跨模态整合细粒度角度考虑原文链接
- Zero-Shot Learning
不当菜鸡的程序媛
学习记录深度学习人工智能
借用huggingface一本书里面的一段话:huggingface有一个巨大的模型库,其中一些事已经非常成熟的经典模型,这些模型即使不进行任何训练也能直接得出比较好的预测结果,也就是常说的zeroshotlearning
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {