Solidity 官方文档中文版(二)

Solidity Assembly

Solidity定义了一个汇编语言,可以不同Solidity一起使用。这个汇编语言还可以嵌入到Solidity源码中,以内联汇编的方式使用。下面我们将从内联汇编如何使用着手,介绍其与独立使用的汇编语言的不同,最后再介绍这门汇编语言。

文档尚待完善的补充的地方:待补充内联汇编的变量作用域的不同,尤其是使用含internal的函数的库时所引入的复杂度。另外,还需补充,编译器定义的符号(symbols)。

内联汇编

通常我们通过库代码,来增强语言我,实现一些精细化的控制,Solidity为我们提供了一种接近于EVM底层的语言,内联汇编,允许与Solidity结合使用。由于EVM是栈式的,所以有时定位栈比较麻烦,Solidty的内联汇编为我们提供了下述的特性,来解决手写底层代码带来的各种问题:

  • 允许函数风格的操作码:mul(1, add(2, 3))等同于push1 3 push1 2 add push1 1 mul
  • 内联局部变量:let x := add(2, 3) let y := mload(0x40) x := add(x, y)
  • 可访问外部变量:function f(uint x) { assembly { x := sub(x, 1) } }
  • 标签:let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))
  • 循环:for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }
  • switch语句:switch x case 0 { y := mul(x, 2) } default { y := 0 }
  • 函数调用:function f(x) -> y { switch x case 0 { y := 1 } default { y := mul(x, f(sub(x, 1))) } }

下面将详细介绍内联编译(inline assembly)语言。

需要注意的是内联编译是一种非常底层的方式来访问EVM虚拟机。他没有Solidity提供的多种安全机制。

示例

下面的例子提供了一个库函数来访问另一个合约,并把它写入到一个bytes变量中。有一些不能通过常规的Solidity语言完成,内联库可以用来在某些方面增强语言的能力。

pragma solidity ^0.4.0;

library GetCode {
    function at(address _addr) returns (bytes o_code) {
        assembly {
            // retrieve the size of the code, this needs assembly
            let size := extcodesize(_addr)
            // allocate output byte array - this could also be done without assembly
            // by using o_code = new bytes(size)
            o_code := mload(0x40)
            // new "memory end" including padding
            mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
            // store length in memory
            mstore(o_code, size)
            // actually retrieve the code, this needs assembly
            extcodecopy(_addr, add(o_code, 0x20), 0, size)
        }
    }
}

内联编译在当编译器没办法得到有效率的代码时非常有用。但需要留意的是内联编译语言写起来是比较难的,因为编译器不会进行一些检查,所以你应该只在复杂的,且你知道你在做什么的事情上使用它。

pragma solidity ^0.4.0;

library VectorSum {
    // This function is less efficient because the optimizer currently fails to
    // remove the bounds checks in array access.
    function sumSolidity(uint[] _data) returns (uint o_sum) {
        for (uint i = 0; i < _data.length; ++i)
            o_sum += _data[i];
    }

    // We know that we only access the array in bounds, so we can avoid the check.
    // 0x20 needs to be added to an array because the first slot contains the
    // array length.
    function sumAsm(uint[] _data) returns (uint o_sum) {
        for (uint i = 0; i < _data.length; ++i) {
            assembly {
                o_sum := mload(add(add(_data, 0x20), mul(i, 0x20)))
            }
        }
    }
}

语法

内联编译语言也会像Solidity一样解析注释,字面量和标识符。所以你可以使用///**/的方式注释。内联编译的在Solidity中的语法是包裹在assembly { ... },下面是可用的语法,后续有更详细的内容。

  • 字面量。如0x12342abc(字符串最多是32个字符)
  • 操作码(指令的方式),如mload sload dup1 sstore,后面有可支持的指令列表
  • 函数风格的操作码,如add(1, mlod(0)
  • 标签,如name:
  • 变量定义,如let x := 7 或 let x := add(y, 3)
  • 标识符(标签或内联局部变量或外部),如jump(name)3 x add
  • 赋值(指令风格),如,3 =: x
  • 函数风格的赋值,如x := add(y, 3)
  • 支持块级的局部变量,如{ let x := 3 { let y := add(x, 1) } }

操作码

这个文档不想介绍EVM虚拟机的完整描述,但后面的列表可以做为EVM虚拟机的指令码的一个参考。

如果一个操作码有参数(通过在栈顶),那么他们会放在括号。需要注意的是参数的顺序可以颠倒(非函数风格,后面会详细说明)。用-标记的操作码不会将一个参数推到栈顶,而标记为*的是非常特殊的,所有其它的将且只将一个推到栈顶。

在后面的例子中,mem[a...b)表示成位置a到位置b(不包含)的memory字节内容,storage[p]表示在位置pstrorage内容。

操作码pushijumpdest不能被直接使用。

在语法中,操作码被表示为预先定义的标识符。

操作码 说明
stop - stop execution, identical to return(0,0)
add(x, y)   x + y
sub(x, y)   x - y
mul(x, y)   x * y
div(x, y)   x / y
sdiv(x, y)   x / y, for signed numbers in two’s complement
mod(x, y)   x % y
smod(x, y)   x % y, for signed numbers in two’s complement
exp(x, y)   x to the power of y
not(x)   ~x, every bit of x is negated
lt(x, y)   1 if x < y, 0 otherwise
gt(x, y)   1 if x > y, 0 otherwise
slt(x, y)   1 if x < y, 0 otherwise, for signed numbers in two’s complement
sgt(x, y)   1 if x > y, 0 otherwise, for signed numbers in two’s complement
eq(x, y)   1 if x == y, 0 otherwise
iszero(x)   1 if x == 0, 0 otherwise
and(x, y)   bitwise and of x and y
or(x, y)   bitwise or of x and y
xor(x, y)   bitwise xor of x and y
byte(n, x)   nth byte of x, where the most significant byte is the 0th byte
addmod(x, y, m)   (x + y) % m with arbitrary precision arithmetics
mulmod(x, y, m)   (x * y) % m with arbitrary precision arithmetics
signextend(i, x)   sign extend from (i*8+7)th bit counting from least significant
keccak256(p, n)   keccak(mem[p...(p+n)))
sha3(p, n)   keccak(mem[p...(p+n)))
jump(label) - jump to label / code position
jumpi(label, cond) - jump to label if cond is nonzero
pc   current position in code
pop(x) - remove the element pushed by x
dup1 ... dup16   copy ith stack slot to the top (counting from top)
swap1 ... swap16 * swap topmost and ith stack slot below it
mload(p)   mem[p..(p+32))
mstore(p, v) - mem[p..(p+32)) := v
mstore8(p, v) - mem[p] := v & 0xff - only modifies a single byte
sload(p)   storage[p]
sstore(p, v) - storage[p] := v
msize   size of memory, i.e. largest accessed memory index
gas   gas still available to execution
address   address of the current contract / execution context
balance(a)   wei balance at address a
caller   call sender (excluding delegatecall)
callvalue   wei sent together with the current call
calldataload(p)   call data starting from position p (32 bytes)
calldatasize   size of call data in bytes
calldatacopy(t, f, s) - copy s bytes from calldata at position f to mem at position t
codesize   size of the code of the current contract / execution context
codecopy(t, f, s) - copy s bytes from code at position f to mem at position t
extcodesize(a)   size of the code at address a
extcodecopy(a, t, f, s) - like codecopy(t, f, s) but take code at address a
returndatasize   size of the last returndata
returndatacopy(t, f, s) - copy s bytes from returndata at position f to mem at position t
create(v, p, s)   create new contract with code mem[p..(p+s)) and send v wei and return the new address
create2(v, n, p, s)   create new contract with code mem[p..(p+s)) at address keccak256(
. n . keccak256(mem[p..(p+s))) and send v wei and return the new address
call(g, a, v, in, insize, out, outsize)   call contract at address a with input mem[in..(in+insize)) providing g gas and v wei and output area mem[out..(out+outsize)) returning 0 on error (eg. out of gas) and 1 on success
callcode(g, a, v, in, insize, out, outsize)   identical to call but only use the code from a and stay in the context of the current contract otherwise
delegatecall(g, a, in, insize, out, outsize)   identical to callcode but also keep caller and callvalue
staticcall(g, a, in, insize, out, outsize)   identical to call(g, a, 0, in, insize, out, outsize) but do not allow state modifications
return(p, s) - end execution, return data mem[p..(p+s))
revert(p, s) - end execution, revert state changes, return data mem[p..(p+s))
selfdestruct(a) - end execution, destroy current contract and send funds to a
invalid - end execution with invalid instruction
log0(p, s) - log without topics and data mem[p..(p+s))
log1(p, s, t1) - log with topic t1 and data mem[p..(p+s))
log2(p, s, t1, t2) - log with topics t1, t2 and data mem[p..(p+s))
log3(p, s, t1, t2, t3) - log with topics t1, t2, t3 and data mem[p..(p+s))
log4(p, s, t1, t2, t3, t4) - log with topics t1, t2, t3, t4 and data mem[p..(p+s))
origin   transaction sender
gasprice   gas price of the transaction
blockhash(b)   hash of block nr b - only for last 256 blocks excluding current
coinbase   current mining beneficiary
timestamp   timestamp of the current block in seconds since the epoch
number   current block number
difficulty   difficulty of the current block
gaslimit   block gas limit of the current block

字面量

你可以使用整数常量,通过直接以十进制或16进制的表示方式,将会自动生成恰当的pushi指令。

assembly { 2 3 add "abc" and }

上面的例子中,将会先加2,3得到5,然后再与字符串abc进行与运算。字符串按左对齐存储,且不能超过32字节。

函数风格

你可以在操作码后接着输入操作码,它们最终都会生成正确的字节码。比如:

3 0x80 mload add 0x80 mstore

下面将会添加3memory中位置0x80的值。

由于经常很难直观的看到某个操作码真正的参数,Solidity内联编译提供了一个函数风格的表达式,上面的代码与下述等同:

mstore(0x80, add(mload(0x80), 3))

函数风格的表达式不能在内部使用指令风格,如1 2 mstore(0x80, add)将不是合法的,必须被写为mstore(0x80, add(2, 1))。那些不带参数的操作码,括号可以忽略。

需要注意的是函数风格的参数与指令风格的参数是反的。如果使用函数风格,第一个参数将会出现在栈顶。

访问外部函数与变量

Solidity中的变量和其它标识符,可以简单的通过名称引用。对于memory变量,这将会把地址而不是值推到栈上。Storage的则有所不同,由于对应的值不一定会占满整个storage槽位,所以它的地址由槽和实际存储位置相对起始字节偏移。要搜索变量x指向的槽位,使用x_slot,得到变量相对槽位起始位置的偏移使用x_offset

在赋值中(见下文),我们甚至可以直接向Solidity变量赋值。

还可以访问内联编译的外部函数:内联编译会推入整个的入口的label(应用虚函数解析的方式)。Solidity中的调用语义如下:

  • 调用者推入返回的label,arg1,arg2, ... argn
  • 调用返回ret1,ret2,..., retm

这个功能使用起来还是有点麻烦,因为堆栈偏移量在调用过程中基本上有变化,因此对局部变量的引用将是错误的。

pragma solidity ^0.4.11;

contract C {
    uint b;
    function f(uint x) returns (uint r) {
        assembly {
            r := mul(x, sload(b_slot)) // ignore the offset, we know it is zero
        }
    }
}

标签

另一个在EVM的汇编的问题是jumpjumpi使用了绝对地址,可以很容易的变化。Solidity内联汇编提供了标签来让jump跳转更加容易。需要注意的是标签是非常底层的特性,尽量使用内联汇编函数,循环,Switch指令来代替。下面是一个求Fibonacci的例子:

{
    let n := calldataload(4)
    let a := 1
    let b := a
loop:
    jumpi(loopend, eq(n, 0))
    a add swap1
    n := sub(n, 1)
    jump(loop)
loopend:
    mstore(0, a)
    return(0, 0x20)
}

需要注意的是自动访问栈元素需要内联者知道当前的栈高。这在跳转的源和目标之间有不同栈高时将失败。当然你也仍然可以在这种情况下使用jump,但你最好不要在这种情况下访问栈上的变量(即使是内联变量)。

此外,栈高分析器会一个操作码接着一个操作码的分析代码(而不是根据控制流),所以在下面的情况下,汇编程序将对标签two的堆栈高度产生错误的判断:


{
    let x := 8
    jump(two)
    one:
        // Here the stack height is 2 (because we pushed x and 7),
        // but the assembler thinks it is 1 because it reads
        // from top to bottom.
        // Accessing the stack variable x here will lead to errors.
        x := 9
        jump(three)
    two:
        7 // push something onto the stack
        jump(one)
    three:
}

这个问题可以通过手动调整栈高来解决。你可以在标签前添加栈高需要的增量。需要注意的是,你没有必要关心这此,如果你只是使用循环或汇编级的函数。

下面的例子展示了,在极端的情况下,你可以通过上面说的解决这个问题:

{
    let x := 8
    jump(two)
    0 // This code is unreachable but will adjust the stack height correctly
    one:
        x := 9 // Now x can be accessed properly.
        jump(three)
        pop // Similar negative correction.
    two:
        7 // push something onto the stack
        jump(one)
    three:
    pop // We have to pop the manually pushed value here again.
}

定义汇编-局部变量

你可以通过let关键字来定义在内联汇编中有效的变量,实际上它只是在{}中有效。内部实现上是,在let指令出现时会在栈上创建一个新槽位,来保存定义的临时变量,在块结束时,会自动在栈上移除对应变量。你需要为变量提供一个初始值,比如0,但也可以是复杂的函数表达式:

pragma solidity ^0.4.0;

contract C {
    function f(uint x) returns (uint b) {
        assembly {
            let v := add(x, 1)
            mstore(0x80, v)
            {
                let y := add(sload(v), 1)
                b := y
            } // y is "deallocated" here
            b := add(b, v)
        } // v is "deallocated" here
    }
}

赋值

你可以向内联局部变量赋值,或者函数局部变量。需要注意的是当你向一个指向memorystorage赋值时,你只是修改了对应指针而不是对应的数据。

有两种方式的赋值方式:函数风格和指令风格。函数风格,比如variable := value,你必须在函数风格的表达式中提供一个变量,最终将得到一个栈变量。指令风格=: variable,值则直接从栈底取。以于两种方式冒号指向的都是变量名称(译者注:注意语法中冒号的位置)。赋值的效果是将栈上的变量值替换为新值。

assembly {
    let v := 0 // functional-style assignment as part of variable declaration
    let g := add(v, 2)
    sload(10)
    =: v // instruction style assignment, puts the result of sload(10) into v
}

Switch

你可以使用switch语句来作为一个基础版本的if/else语句。它需要取一个值,用它来与多个常量进行对比。每个分支对应的是对应切尔西到的常量。与某些语言容易出错的行为相反,控制流不会自动从一个判断情景到下一个场景(译者注:默认是break的)。最后有个叫default的兜底。


assembly {
    let x := 0
    switch calldataload(4)
    case 0 {
        x := calldataload(0x24)
    }
    default {
        x := calldataload(0x44)
    }
    sstore(0, div(x, 2))
}

可以有的case不需要包裹到大括号中,但每个case需要用大括号的包裹。

循环

内联编译支持一个简单的for风格的循环。for风格的循环的头部有三个部分,一个是初始部分,一个条件和一个后叠加部分。条件必须是一个函数风格的表达式,而其它两个部分用大括号包裹。如果在初始化的块中定义了任何变量,这些变量的作用域会被默认扩展到循环体内(条件,与后面的叠加部分定义的变量也类似。译者注:因为默认是块作用域,所以这里是一种特殊情况)。

assembly {
    let x := 0
    for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } {
        x := add(x, mload(i))
    }
}

函数

汇编语言允许定义底层的函数。这些需要在栈上取参数(以及一个返回的代码行),也会将结果存到栈上。调用一个函数与执行一个函数风格的操作码看起来是一样的。

函数可以在任何地方定义,可以在定义的块中可见。在函数内,你不能访问一个在函数外定义的一个局部变量。同时也没有明确的return语句。

如果你调用一个函数,并返回了多个值,你可以将他们赋值给一个元组,使用a, b := f(x)let a, b := f(x)

下面的例子中通过平方乘来实现一个指数函数。

assembly {
    function power(base, exponent) -> result {
        switch exponent
        case 0 { result := 1 }
        case 1 { result := base }
        default {
            result := power(mul(base, base), div(exponent, 2))
            switch mod(exponent, 2)
                case 1 { result := mul(base, result) }
        }
    }
}

内联汇编中要注意的事

内联汇编语言使用中需要一个比较高的视野,但它又是非常底层的语法。函数调用,循环,switch被转换为简单的重写规则,另外一个语言提供的是重安排函数风格的操作码,管理了jump标签,计算了栈高以方便变量的访问,同时在块结束时,移除块内定义的块内的局部变量。特别需要注意的是最后两个情况。你必须清醒的知道,汇编语言只提供了从开始到结束的栈高计算,它没有根据你的逻辑去计算栈高(译者注:这常常导致错误)。此外,像交换这样的操作,仅仅交换栈里的内容,并不是变量的位置。

Solidity中的惯例

与EVM汇编不同,Solidity知道类型少于256字节,如,uint24。为了让他们更高效,大多数的数学操作仅仅是把也们当成是一个256字节的数字进行计算,高位的字节只在需要的时候才会清理,比如在写入内存前,或者在需要比较时。这意味着如果你在内联汇编中访问这样的变量,你必须要手动清除高位的无效字节。

Solidity以非常简单的方式来管理内存:内部存在一个空间内存的指针在内存位置0x40。如果你想分配内存,可以直接使用从那个位置的内存,并相应的更新指针。

Solidity中的内存数组元素,总是占用多个32字节的内存(也就是说byte[]也是这样,但是bytesstring不是这样)。多维的memory的数组是指向memory的数组。一个动态数组的长度存储在数据的第一个槽位,紧接着就是数组的元素。

固定长度的memory数组没有一个长度字段,但它们将很快增加这个字段,以让定长与变长数组间有更好的转换能力,所以请不要依赖于这点。


库(Libraries)

库与合约类似,但它的目的是在一个指定的地址,且仅部署一次,然后通过EVM的特性DELEGATECALL(Homestead之前是用CALLCODE)来复用代码。这意味着库函数调用时,它的代码是在调用合约的上下文中执行。使用this将会指向到调用合约,而且可以访问调用合约的存储(storage)。因为一个合约是一个独立的代码块,它仅可以访问调用合约明确提供的状态变量(state variables),否则除此之外,没有任何方法去知道这些状态变量。

使用库合约的合约,可以将库合约视为隐式的父合约(base contracts),当然它们不会显式的出现在继承关系中。但调用库函数的方式非常类似,如库L有函数f(),使用L.f()即可访问。此外,internal的库函数对所有合约可见,如果把库想像成一个父合约就能说得通了。当然调用内部函数使用的是internal的调用惯例,这意味着所有internal类型可以传进去,memory类型则通过引用传递,而不是拷贝的方式。为了在EVM中实现这一点,internal的库函数的代码和从其中调用的所有函数将被拉取(pull into)到调用合约中,然后执行一个普通的JUMP来代替DELEGATECALL

下面的例子展示了如何使用库(后续在using for章节有一个更适合的实现Set的例子)。

pragma solidity ^0.4.0;

library Set {
  // We define a new struct datatype that will be used to
  // hold its data in the calling contract.
  struct Data { mapping(uint => bool) flags; }

  // Note that the first parameter is of type "storage
  // reference" and thus only its storage address and not
  // its contents is passed as part of the call.  This is a
  // special feature of library functions.  It is idiomatic
  // to call the first parameter 'self', if the function can
  // be seen as a method of that object.
  function insert(Data storage self, uint value)
      returns (bool)
  {
      if (self.flags[value])
          return false; // already there
      self.flags[value] = true;
      return true;
  }

  function remove(Data storage self, uint value)
      returns (bool)
  {
      if (!self.flags[value])
          return false; // not there
      self.flags[value] = false;
      return true;
  }

  function contains(Data storage self, uint value)
      returns (bool)
  {
      return self.flags[value];
  }
}


contract C {
    Set.Data knownValues;

    function register(uint value) {
        // The library functions can be called without a
        // specific instance of the library, since the
        // "instance" will be the current contract.
        if (!Set.insert(knownValues, value))
            throw;
    }
    // In this contract, we can also directly access knownValues.flags, if we want.
}

上面的例子中:

  • Library定义了一个数据结构体,用来在调用的合约中使用(库本身并未实际存储的数据)。如果函数需要操作数据,这个数据一般是通过库函数的第一个参数传入,按惯例会把参数名定为self
  • 另外一个需要留意的是上例中self的类型是storage,那么意味着传入的会是一个引用,而不是拷贝的值,那么修改它的值,会同步影响到其它地方,俗称引用传递,非值传递。
  • 库函数的使用不需要实例化,c.register中可以看出是直接使用Set.insert。但实际上当前的这个合约本身就是它的一个实例。
  • 这个例子中,c可以直接访问,knownValues。虽然这个值主要是被库函数使用的。

当然,你完全可以不按上面的方式来使用库函数,可以不需要定义结构体,不需要使用storage类型的参数,还可以在任何位置有多个storage的引用类型的参数。

调用Set.containsSet.removeSet.insert都会编译为以DELEGATECALL的方式调用external的合约和库。如果使用库,需要注意的是一个实实在在的外部函数调用发生了。尽管msg.sendermsg.valuethis还会保持它们在此调用中的值(在Homestead之前,由于实际使用的是CALLCODEmsg.sendermsg.value会变化)。

下面的例子演示了如何使用memory类型和内部函数(inernal function),来实现一个自定义类型,但不会用到外部函数调用(external function)

pragma solidity ^0.4.0;

library BigInt {
    struct bigint {
        uint[] limbs;
    }

    function fromUint(uint x) internal returns (bigint r) {
        r.limbs = new uint[](1);
        r.limbs[0] = x;
    }

    function add(bigint _a, bigint _b) internal returns (bigint r) {
        r.limbs = new uint[](max(_a.limbs.length, _b.limbs.length));
        uint carry = 0;
        for (uint i = 0; i < r.limbs.length; ++i) {
            uint a = limb(_a, i);
            uint b = limb(_b, i);
            r.limbs[i] = a + b + carry;
            if (a + b < a || (a + b == uint(-1) && carry > 0))
                carry = 1;
            else
                carry = 0;
        }
        if (carry > 0) {
            // too bad, we have to add a limb
            uint[] memory newLimbs = new uint[](r.limbs.length + 1);
            for (i = 0; i < r.limbs.length; ++i)
                newLimbs[i] = r.limbs[i];
            newLimbs[i] = carry;
            r.limbs = newLimbs;
        }
    }

    function limb(bigint _a, uint _limb) internal returns (uint) {
        return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;
    }

    function max(uint a, uint b) private returns (uint) {
        return a > b ? a : b;
    }
}


contract C {
    using BigInt for BigInt.bigint;

    function f() {
        var x = BigInt.fromUint(7);
        var y = BigInt.fromUint(uint(-1));
        var z = x.add(y);
    }
}

因为编译器并不知道库最终部署的地址。这些地址须由linker填进最终的字节码中(使用命令行编译器来进行联接)。如果地址没有以参数的方式正确给到编译器,编译后的字节码将会仍包含一个这样格式的占们符_Set___(其中Set是库的名称)。可以通过手动将所有的40个符号替换为库的十六进制地址。

对比普通合约来说,库的限制:

  • 状态变量(state variables)
  • 不能继承或被继承
  • 不能接收ether

这些限制将来也可能被解除!

附着库(Using for)

指令using A for B;用来附着库里定义的函数(从库A)到任意类型B。这些函数将会默认接收调用函数对象的实例作为第一个参数。语法类似,python中的self变量一样。

using A for *的效果是,库A中的函数被附着在做任意的类型上。

在这两种情形中,所有函数,即使那些第一个参数的类型与调用函数的对象类型不匹配的,也被附着上了。类型检查是在函数被真正调用时,函数重载检查也会执行。

using A for B;指令仅在当前的作用域有效,且暂时仅仅支持当前的合约这个作用域,后续也非常有可能解除这个限制,允许作用到全局范围。如果能作用到全局范围,通过引入一些模块(module),数据类型将能通过库函数扩展功能,而不需要每个地方都得写一遍类似的代码了。

下面我们来换个方式重写set的例子。

pragma solidity ^0.4.0;

// This is the same code as before, just without comments
library Set {
  struct Data { mapping(uint => bool) flags; }

  function insert(Data storage self, uint value)
      returns (bool)
  {
      if (self.flags[value])
        return false; // already there
      self.flags[value] = true;
      return true;
  }

  function remove(Data storage self, uint value)
      returns (bool)
  {
      if (!self.flags[value])
          return false; // not there
      self.flags[value] = false;
      return true;
  }

  function contains(Data storage self, uint value)
      returns (bool)
  {
      return self.flags[value];
  }
}


contract C {
    using Set for Set.Data; // this is the crucial change
    Set.Data knownValues;

    function register(uint value) {
        // Here, all variables of type Set.Data have
        // corresponding member functions.
        // The following function call is identical to
        // Set.insert(knownValues, value)
        if (!knownValues.insert(value))
            throw;
    }
}

我们也可以通过这种方式来扩展基本类型(elementary types)

pragma solidity ^0.4.0;

library Search {
    function indexOf(uint[] storage self, uint value) returns (uint) {
        for (uint i = 0; i < self.length; i++)
            if (self[i] == value) return i;
        return uint(-1);
    }
}


contract C {
    using Search for uint[];
    uint[] data;

    function append(uint value) {
        data.push(value);
    }

    function replace(uint _old, uint _new) {
        // This performs the library function call
        uint index = data.indexOf(_old);
        if (index == uint(-1))
            data.push(_new);
        else
            data[index] = _new;
    }
}

需要注意的是所有库调用都实际上是EVM函数调用。这意味着,如果你传的是memory类型的,或者是值类型(vaue types),那么仅会传一份拷贝,即使是self变量。变通之法就是使用存储(storage)类型的变量,这样就不会拷贝内容。


接口

接口与抽象合约类似,与之不同的是,接口内没有任何函数是已实现的,同时还有如下限制:

  1. 不能继承其它合约,或接口。
  2. 不能定义构造器
  3. 不能定义变量
  4. 不能定义结构体
  5. 不能定义枚举类

其中的一些限制可能在未来放开。

接口基本上限制为合约ABI定义可以表示的内容,ABI和接口定义之间的转换应该是可能的,不会有任何信息丢失。

接口用自己的关键词表示:

interface Token {
    function transfer(address recipient, uint amount);
}

合约可以继承于接口,因为他们可以继承于其它的合约。


抽象(Abstract Contracts)

抽象函数是没有函数体的的函数。如下:

pragma solidity ^0.4.0;

contract Feline {
    function utterance() returns (bytes32);
}

这样的合约不能通过编译,即使合约内也包含一些正常的函数。但它们可以做为基合约被继承。

pragma solidity ^0.4.0;

contract Feline {
    function utterance() returns (bytes32);
    
    function getContractName() returns (string){
        return "Feline";
    }
}


contract Cat is Feline {
    function utterance() returns (bytes32) { return "miaow"; }
}

如果一个合约从一个抽象合约里继承,但却没实现所有函数,那么它也是一个抽象合约


继承(Inheritance)

Solidity通过复制包括多态的代码来支持多重继承。

所有函数调用是虚拟(virtual)的,这意味着最远的派生方式会被调用,除非明确指定了合约。

当一个合约从多个其它合约那里继承,在区块链上仅会创建一个合约,在父合约里的代码会复制来形成继承合约。

基本的继承体系与python有些类似,特别是在处理多继承上面。

下面用一个例子来详细说明:

pragma solidity ^0.4.0;

contract owned {
    function owned() { owner = msg.sender; }
    address owner;
}


// Use "is" to derive from another contract. Derived
// contracts can access all non-private members including
// internal functions and state variables. These cannot be
// accessed externally via `this`, though.
contract mortal is owned {
    function kill() {
        if (msg.sender == owner) selfdestruct(owner);
    }
}


// These abstract contracts are only provided to make the
// interface known to the compiler. Note the function
// without body. If a contract does not implement all
// functions it can only be used as an interface.
contract Config {
    function lookup(uint id) returns (address adr);
}


contract NameReg {
    function register(bytes32 name);
    function unregister();
 }


// Multiple inheritance is possible. Note that "owned" is
// also a base class of "mortal", yet there is only a single
// instance of "owned" (as for virtual inheritance in C++).
contract named is owned, mortal {
    function named(bytes32 name) {
        Config config = Config(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);
        NameReg(config.lookup(1)).register(name);
    }

    // Functions can be overridden by another function with the same name and
    // the same number/types of inputs.  If the overriding function has different
    // types of output parameters, that causes an error.
    // Both local and message-based function calls take these overrides
    // into account.
    function kill() {
        if (msg.sender == owner) {
            Config config = Config(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);
            NameReg(config.lookup(1)).unregister();
            // It is still possible to call a specific
            // overridden function.
            mortal.kill();
        }
    }
}


// If a constructor takes an argument, it needs to be
// provided in the header (or modifier-invocation-style at
// the constructor of the derived contract (see below)).
contract PriceFeed is owned, mortal, named("GoldFeed") {
   function updateInfo(uint newInfo) {
      if (msg.sender == owner) info = newInfo;
   }

   function get() constant returns(uint r) { return info; }

   uint info;
}

上面的例子的named合约的kill()方法中,我们调用了motal.kill()调用父合约的销毁函数(destruction)。但这样可能什么引发一些小问题。

pragma solidity ^0.4.0;

contract mortal is owned {
    function kill() {
        if (msg.sender == owner) selfdestruct(owner);
    }
}


contract Base1 is mortal {
    function kill() { /* do cleanup 1 */ mortal.kill(); }
}


contract Base2 is mortal {
    function kill() { /* do cleanup 2 */ mortal.kill(); }
}


contract Final is Base1, Base2 {
}

Final.kill()的调用只会调用Base2.kill(),因为派生重写,会跳过Base1.kill,因为它根本就不知道有Base1。一个变通方法是使用super

pragma solidity ^0.4.0;

contract mortal is owned {
    function kill() {
        if (msg.sender == owner) selfdestruct(owner);
    }
}


contract Base1 is mortal {
    function kill() { /* do cleanup 1 */ super.kill(); }
}


contract Base2 is mortal {
    function kill() { /* do cleanup 2 */ super.kill(); }
}


contract Final is Base2, Base1 {
}

如果Base1调用了函数super,它不会简单的调用基类的合约函数,它还会调用继承关系图谱上的下一个基类合约,所以会调用Base2.kill()。需要注意的最终的继承图谱将会是:Final,Base1,Base2,mortal,owned。使用super时会调用的实际函数在使用它的类的上下文中是未知的,尽管它的类型是已知的。这类似于普通虚函数查找(ordinary virtual method lookup)

基类构造器的方法(Arguments for Base Constructors)

派生的合约需要提供所有父合约需要的所有参数,所以用两种方式来做,见下面的例子:

pragma solidity ^0.4.0;

contract Base {
    uint x;
    function Base(uint _x) { x = _x; }
}


contract Derived is Base(7) {
    function Derived(uint _y) Base(_y * _y) {
    }
}

或者直接在继承列表中使用is Base(7),或像修改器(modifier)使用方式一样,做为派生构造器定义头的一部分Base(_y * _y)。第一种方式对于构造器是常量的情况比较方便,可以大概说明合约的行为。第二种方式适用于构造的参数值由派生合约的指定的情况。在上述两种都用的情况下,第二种方式优先(一般情况只用其中一种方式就好了)。

多继承与线性化(Multiple Inheritance and Linearization)

实现多继承的编程语言需要解决几个问题,其中之一是菱形继承问题又称钻石问题,如下图。
Solidity 官方文档中文版(二)_第1张图片

Solidity的解决方案参考Python,使用C3_linearization来强制将基类合约转换一个有向无环图(DAG)的特定顺序。结果是我们希望的单调性,但却禁止了某些继承行为。特别是基类合约在is后的顺序非常重要。下面的代码,Solidity会报错Linearization of inheritance graph impossible

pragma solidity ^0.4.0;

contract X {}
contract A is X {}
contract C is A, X {}

原因是C会请求X来重写A(因为继承定义的顺序是A,X),但A自身又是重写X的,所以这是一个不可解决的矛盾。

一个简单的指定基类合约的继承顺序原则是从most base-likemost derived

继承有相同名字的不同类型成员

当继承最终导致一个合约同时存在多个相同名字的修改器或函数,它将被视为一个错误。同新的如果事件与修改器重名,或者函数与事件重名都将产生错误。作为一个例外,状态变量的getter可以覆盖一个public的函数。


事件(Events)

事件是使用EVM日志内置功能的方便工具,在DAPP的接口中,它可以反过来调用Javascript的监听事件的回调。

事件在合约中可被继承。当被调用时,会触发参数存储到交易的日志中(一种区块链上的特殊数据结构)。这些日志与合约的地址关联,并合并到区块链中,只要区块可以访问就一直存在(至少Frontier,Homestead是这样,但Serenity也许也是这样)。日志和事件在合约内不可直接被访问,即使是创建日志的合约。

日志的SPV(简单支付验证)是可能的,如果一个外部的实体提供了一个这样证明的合约,它可以证明日志在区块链是否存在。但需要留意的是,由于合约中仅能访问最近的256个区块哈希,所以还需要提供区块头信息。

可以最多有三个参数被设置为indexed,来设置是否被索引。设置为索引后,可以允许通过这个参数来查找日志,甚至可以按特定的值过滤。

如果数组(包括stringbytes)类型被标记为索引项,会用它对应的Keccak-256哈希值做为topic

除非是匿名事件,否则事件签名(比如:Deposit(address,hash256,uint256))是其中一个topic,同时也意味着对于匿名事件无法通过名字来过滤。

所有未被索引的参数将被做为日志的一部分被保存起来。

被索引的参数将不会保存它们自己,你可以搜索他们的值,但不能检索值本身。

下面是一个简单的例子:

pragma solidity ^0.4.0;

contract ClientReceipt {
    event Deposit(
        address indexed _from,
        bytes32 indexed _id,
        uint _value
    );

    function deposit(bytes32 _id) {
        // Any call to this function (even deeply nested) can
        // be detected from the JavaScript API by filtering
        // for `Deposit` to be called.
        Deposit(msg.sender, _id, msg.value);
    }
}

下述是使用javascript来获取日志的例子。

var abi = /* abi as generated by the compiler */;
var ClientReceipt = web3.eth.contract(abi);
var clientReceipt = ClientReceipt.at(0x123 /* address */);

var event = clientReceipt.Deposit();

// watch for changes
event.watch(function(error, result){
    // result will contain various information
    // including the argumets given to the Deposit
    // call.
    if (!error)
        console.log(result);
});

// Or pass a callback to start watching immediately
var event = clientReceipt.Deposit(function(error, result) {
    if (!error)
        console.log(result);
});

底层的日志接口(Low-level Interface to Logs)

通过函数log0log1log2log3log4,可以直接访问底层的日志组件。logi表示总共有带i + 1个参数(i表示的就是可带参数的数目,只是是从0开始计数的)。其中第一个参数会被用来做为日志的数据部分,其它的会做为主题(topics)。前面例子中的事件可改为如下:

log3(
    msg.value,
    0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20,
    msg.sender,
    _id
);

其中的长16进制串是事件的签名,计算方式是keccak256("Deposit(address,hash256,uint256)")

更多的理解事件的资源

  • Javascript documentation
  • Example usage of events
  • How to access them in js

回退函数(fallback function)

每一个合约有且仅有一个没有名字的函数。这个函数无参数,也无返回值。如果调用合约时,没有匹配上任何一个函数(或者没有传哪怕一点数据),就会调用默认的回退函数。

此外,当合约收到ether时(没有任何其它数据),这个函数也会被执行。在此时,一般仅有少量的gas剩余,用于执行这个函数(准确的说,还剩2300gas)。所以应该尽量保证回退函数使用少的gas。

下述提供给回退函数可执行的操作会比常规的花费得多一点。

  • 写入到存储(storage)
  • 创建一个合约
  • 执行一个外部(external)函数调用,会花费非常多的gas
  • 发送ether

请在部署合约到网络前,保证透彻的测试你的回退函数,来保证函数执行的花费控制在2300gas以内。

一个没有定义一个回退函数的合约。如果接收ether,会触发异常,并返还ether(solidity v0.4.0开始)。所以合约要接收ether,必须实现回退函数。下面来看个例子:

pragma solidity ^0.4.0;

contract Test {
    // This function is called for all messages sent to
    // this contract (there is no other function).
    // Sending Ether to this contract will cause an exception,
    // because the fallback function does not have the "payable"
    // modifier.
    function() { x = 1; }
    uint x;
}


// This contract keeps all Ether sent to it with no way
// to get it back.
contract Sink {
    function() payable { }
}


contract Caller {
    function callTest(Test test) {
        test.call(0xabcdef01); // hash does not exist
        // results in test.x becoming == 1.

        // The following call will fail, reject the
        // Ether and return false:
        test.send(2 ether);
    }
}

在浏览器中跑的话,记得要先存ether。


常量(constant state variables)

状态变量可以被定义为constant,常量。这样的话,它必须在编译期间通过一个表达式赋值。赋值的表达式不允许:1)访问storage;2)区块链数据,如nowthis.balanceblock.number;3)合约执行的中间数据,如msg.gas;4)向外部合约发起调用。也许会造成内存分配副作用表达式是允许的,但不允许产生其它内存对象的副作用的表达式。内置的函数keccak256keccak256ripemd160ecrecoveraddmodmulmod可以允许调用,即使它们是调用的外部合约。

允许内存分配,从而带来可能的副作用的原因是因为这将允许构建复杂的对象,比如,查找表。虽然当前的特性尚未完整支持。

编译器并不会为常量在storage上预留空间,每个使用的常量都会被对应的常量表达式所替换(也许优化器会直接替换为常量表达式的结果值)。

不是所有的类型都支持常量,当前支持的仅有值类型和字符串。

pragma solidity ^0.4.0;

contract C {
    uint constant x = 32**22 + 8;
    string constant text = "abc";
    bytes32 constant myHash = keccak256("abc");
}

常函数(Constant Functions)

函数也可被声明为常量,这类函数将承诺自己不修改区块链上任何状态。

pragma solidity ^0.4.0;

contract C {
    function f(uint a, uint b) constant returns (uint) {
        return a * (b + 42);
    }
}

访问器(Accessor)方法默认被标记为constant。当前编译器并未强制一个constant的方法不能修改状态。但建议大家对于不会修改数据的标记为constant


函数修改器(Function Modifiers)

修改器(Modifiers)可以用来轻易的改变一个函数的行为。比如用于在函数执行前检查某种前置条件。修改器是一种合约属性,可被继承,同时还可被派生的合约重写(override)。下面我们来看一段示例代码:

pragma solidity ^0.4.0;

contract owned {
    function owned() { owner = msg.sender; }
    address owner;

    // This contract only defines a modifier but does not use
    // it - it will be used in derived contracts.
    // The function body is inserted where the special symbol
    // "_;" in the definition of a modifier appears.
    // This means that if the owner calls this function, the
    // function is executed and otherwise, an exception is
    // thrown.
    modifier onlyOwner {
        if (msg.sender != owner)
            throw;
        _;
    }
}


contract mortal is owned {
    // This contract inherits the "onlyOwner"-modifier from
    // "owned" and applies it to the "close"-function, which
    // causes that calls to "close" only have an effect if
    // they are made by the stored owner.
    function close() onlyOwner {
        selfdestruct(owner);
    }
}


contract priced {
    // Modifiers can receive arguments:
    modifier costs(uint price) {
        if (msg.value >= price) {
            _;
        }
    }
}


contract Register is priced, owned {
    mapping (address => bool) registeredAddresses;
    uint price;

    function Register(uint initialPrice) { price = initialPrice; }

    // It is important to also provide the
    // "payable" keyword here, otherwise the function will
    // automatically reject all Ether sent to it.
    function register() payable costs(price) {
        registeredAddresses[msg.sender] = true;
    }

    function changePrice(uint _price) onlyOwner {
        price = _price;
    }
}

修改器可以被继承,使用将modifier置于参数后,返回值前即可。

特殊_表示使用修改符的函数体的替换位置。

从合约Register可以看出全约可以多继承,通过,号分隔两个被继承的对象。

修改器也是可以接收参数的,如pricedcosts

使用修改器实现的一个防重复进入的例子。

pragma solidity ^0.4.0;
contract Mutex {
    bool locked;
    modifier noReentrancy() {
        if (locked) throw;
        locked = true;
        _;
        locked = false;
    }

    /// This function is protected by a mutex, which means that
    /// reentrant calls from within msg.sender.call cannot call f again.
    /// The `return 7` statement assigns 7 to the return value but still
    /// executes the statement `locked = false` in the modifier.
    function f() noReentrancy returns (uint) {
        if (!msg.sender.call()) throw;
        return 7;
    }
}

例子中,由于call()方法有可能会调回当前方法,修改器实现了防重入的检查。

如果同一个函数有多个修改器,他们之间以空格隔开,修饰器会依次检查执行。

需要注意的是,在Solidity的早期版本中,有修改器的函数,它的return语句的行为有些不同。

在修改器中和函数体内的显式的return语句,仅仅跳出当前的修改器和函数体。返回的变量会被赋值,但整个执行逻辑会在前一个修改器后面定义的"_"后继续执行。

修改器的参数可以是任意表达式。在对应的上下文中,所有的函数中引入的符号,在修改器中均可见。但修改器中引入的符号在函数中不可见,因为它们有可能被重写。


访问函数(Getter Functions)

编译器为自动为所有的public的状态变量创建访问函数。下面的合约例子中,编译器会生成一个名叫data的无参,返回值是uint的类型的值data。状态变量的初始化可以在定义时完成。

pragma solidity ^0.4.0;


contract C{
    uint public c = 10;
}

contract D{
    C c = new C();
    
    function getDataUsingAccessor() returns (uint){
        return c.c();
    }
}

访问函数有外部(external)可见性。如果通过内部(internal)的方式访问,比如直接访问,你可以直接把它当一个变量进行使用,但如果使用外部(external)的方式来访问,如通过this.,那么它必须通过函数的方式来调用。

pragma solidity ^0.4.0;


contract C{
    uint public c = 10;
    
    function accessInternal() returns (uint){
        return c;
    }
    
    function accessExternal() returns (uint){
        return this.c();
    }
}

acessExternal函数中,如果直接返回return this.c;,会出现报错Return argument type function () constant external returns (uint256) is not implicitly convertible to expected type (type of first return variable) uint256.。原因应该是通过外部(external)的方式只能访问到this.c作为函数的对象,所以它认为你是想把一个函数转为uint故而报错。

下面是一个更加复杂的例子:

pragma solidity ^0.4.0;

contract ComplexSimple{
    struct Cat{
        uint a;
        bytes3 b;
        mapping(uint => uint) map;
    }
    
    //
    mapping(uint => mapping(bool => Cat)) public content;
    
    function initial(){
        content[0][true] = Cat(1, 1);
        content[0][true].map[0] = 10;
    }
    
    function get() returns (uint, bytes3, uint){
        return (content[0][true].a, content[0][true].b, content[0][true].map[0]);
    }
}

contract Complex {
    struct Data {
        uint a;
        bytes3 b;
        mapping (uint => uint) map;
    }
    mapping (uint => mapping(bool => Data[])) public data;
    
    
}

文档中自带的的这个Demo始终跑不通,数组类型这里不知为何会抛invalid jump。把这块简化了写了一个ComplextSimple供参考。

需要注意的是publicmapping默认访问参数是需要参数的,并不是之前说的访问函数都是无参的。

mapping类型的数据访问方式变为了data[arg1][arg2][arg3].a

结构体(struct)里的mapping初始化被省略了,因为并没有一个很好的方式来对键赋值。


可见性或权限控制(Visibility And Accessors)

Solidity有两种函数调用方式,一种是内部调用,不会创建一个EVM调用(也叫做消息调用),另一种则是外部调用,会创建EVM调用(会发起消息调用)。Solidity对函数和状态变量提供了四种可见性。分别是external,public,internal,private。其中函数默认是public。状态变量默认的可见性是internal

可见性

external:

外部函数是合约接口的一部分,所以我们可以从其它合约或通过交易来发起调用。一个外部函数f,不能通过内部的方式来发起调用,(如f()不可以,但可以通过this.f())。外部函数在接收大的数组数据时更加有效。

public:

公开函数是合约接口的一部分,可以通过内部,或者消息来进行调用。对于public类型的状态变量,会自动创建一个访问器(详见下文)。

internal

这样声明的函数和状态变量只能通过内部访问。如在当前合约中调用,或继承的合约里调用。需要注意的是不能加前缀this,前缀this是表示通过外部方式访问。

private

私有函数和状态变量仅在当前合约中可以访问,在继承的合约内,不可访问。

备注

所有在合约内的东西对外部的观察者来说都是可见,将某些东西标记为private仅仅阻止了其它合约来进行访问和修改,但并不能阻止其它人看到相关的信息。

可见性的标识符的定义位置,对于state variable是在类型后面,函数是在参数列表和返回关键字中间。来看一个定义的例子:

pragma solidity ^0.4.0;

contract C {
    function f(uint a) private returns (uint b) { return a + 1; }
    function setData(uint a) internal { data = a; }
    uint public data;
}

在下面的例子中,D可以调用c.getData()来访问data的值,但不能调用f。合约E继承自C,所以它可以访问compute函数。

pragma solidity ^0.4.0;

contract C {
    uint private data;

    function f(uint a) private returns(uint b) { return a + 1; }
    function setData(uint a) { data = a; }
    function getData() public returns(uint) { return data; }
    function compute(uint a, uint b) internal returns (uint) { return a+b; }
}


contract D {
    function readData() {
        C c = new C();
        uint local = c.f(7); // error: member "f" is not visible
        c.setData(3);
        local = c.getData();
        local = c.compute(3, 5); // error: member "compute" is not visible
    }
}


contract E is C {
    function g() {
        C c = new C();
        uint val = compute(3, 5);  // acces to internal member (from derivated to parent contract)
    }
}


合约

Solidity中合约有点类似面向对象语言中的类。合约中有用于数据持久化的状态变量(state variables),和可以操作他们的函数。调用另一个合约实例的函数时,会执行一个EVM函数调用,这个操作会切换执行时的上下文,这样,前一个合约的状态变量(state variables)就不能访问了。

创建合约

合约可以通过Solidity,或不通过Solidity创建。当合约创建时,一个和合约同名的函数(构造器函数)会调用一次,用于初始化。

构造器函数是可选的。仅能有一个构造器,所以不支持重载。

如果不通过Solidity,我们可以通过web3.js,使用JavaScript的API来完成合约创建:

// Need to specify some source including contract name for the data param below
var source = "contract CONTRACT_NAME { function CONTRACT_NAME(unit a, uint b) {} }";

// The json abi array generated by the compiler
var abiArray = [
    {
        "inputs":[
            {"name":"x","type":"uint256"},
            {"name":"y","type":"uint256"}
        ],
        "type":"constructor"
    },
    {
        "constant":true,
        "inputs":[],
        "name":"x",
        "outputs":[{"name":"","type":"bytes32"}],
        "type":"function"
    }
];

var MyContract_ = web3.eth.contract(source);
MyContract = web3.eth.contract(MyContract_.CONTRACT_NAME.info.abiDefinition);
// deploy new contract
var contractInstance = MyContract.new(
    10,
    11,
    {from: myAccount, gas: 1000000}
);

具体内部实现里,构造器的参数是紧跟在合约代码的后面,但如果你使用web3.js,可以不用关心这样的细节。

如果一个合约要创建另一个合约,它必须要知道源码。这意味着循环创建依赖是不可能的。

pragma solidity ^0.4.0;

contract OwnedToken {
    // TokenCreator is a contract type that is defined below.
    // It is fine to reference it as long as it is not used
    // to create a new contract.
    TokenCreator creator;
    address owner;
    bytes32 name;

    // This is the constructor which registers the
    // creator and the assigned name.
    function OwnedToken(bytes32 _name) {
        // State variables are accessed via their name
        // and not via e.g. this.owner. This also applies
        // to functions and especially in the constructors,
        // you can only call them like that ("internall"),
        // because the contract itself does not exist yet.
        owner = msg.sender;
        // We do an explicit type conversion from `address`
        // to `TokenCreator` and assume that the type of
        // the calling contract is TokenCreator, there is
        // no real way to check that.
        creator = TokenCreator(msg.sender);
        name = _name;
    }

    function changeName(bytes32 newName) {
        // Only the creator can alter the name --
        // the comparison is possible since contracts
        // are implicitly convertible to addresses.
        if (msg.sender == address(creator))
            name = newName;
    }

    function transfer(address newOwner) {
        // Only the current owner can transfer the token.
        if (msg.sender != owner) return;
        // We also want to ask the creator if the transfer
        // is fine. Note that this calls a function of the
        // contract defined below. If the call fails (e.g.
        // due to out-of-gas), the execution here stops
        // immediately.
        if (creator.isTokenTransferOK(owner, newOwner))
            owner = newOwner;
    }
}

contract TokenCreator {
    function createToken(bytes32 name)
       returns (OwnedToken tokenAddress)
    {
        // Create a new Token contract and return its address.
        // From the JavaScript side, the return type is simply
        // "address", as this is the closest type available in
        // the ABI.
        return new OwnedToken(name);
    }

    function changeName(OwnedToken tokenAddress, bytes32 name) {
        // Again, the external type of "tokenAddress" is
        // simply "address".
        tokenAddress.changeName(name);
    }

    function isTokenTransferOK(
        address currentOwner,
        address newOwner
    ) returns (bool ok) {
        // Check some arbitrary condition.
        address tokenAddress = msg.sender;
        return (keccak256(newOwner) & 0xff) == (bytes20(tokenAddress) & 0xff);
    }
}

内联汇编(Inline Assembly)

为了增强对语言的细粒度的控制,特别是在写通用库时,可以在一个语言中交错使用Solidity的语句来接近其中一个虚拟机。但由于EVM是基于栈执行的,所以有时很难定位到正确的栈槽位,从而提供正确的的参数或操作码。Solidit的内联汇编尝试解决这个问题,但也引入了其它的问题,当你通过下述特性进行手动的汇编时:

  • 函数式的操作码:mul(1, add(2, 3))代替push1 3 push1 2 add push1 1 mul
  • 本地汇编变量:let x := add(2, 3) let y := mload(0x40) x := add(x, y)
  • 访问外部变量:function f(uint x){ assembly { x := sub(x,1)}}
  • 标签支持:let x := 10 repeat := sub(x, 1) jumpi(repeat, eq(x, 0))

Solidity Assembly是对内联汇编的详细介绍。


异常(Excepions)

有一些情况下,异常是自动抛出来的(见下),你也可以使用throw来手动抛出一个异常。抛出异常的效果是当前的执行被终止且被撤销(值的改变和帐户余额的变化都会被回退)。异常还会通过Solidity的函数调用向上冒泡(bubbled up)传递。(send,和底层的函数调用call,delegatecallcallcode是一个例外,当发生异常时,这些函数返回false)。

捕捉异常是不可能的(或许因为异常时,需要强制回退的机制)。

在下面的例子中,我们将如展示如何使用throw来回退转帐,以及演示如何检查send的返回值。

pragma solidity ^0.4.0;

contract Sharer {
    function sendHalf(address addr) payable returns (uint balance) {
        if (!addr.send(msg.value / 2))
            throw; // also reverts the transfer to Sharer
        return this.balance;
    }
}

当前,Solidity在下述场景中自动产生运行时异常。

  1. 如果越界,或是负的序号值访问数组。
  2. 如果访问一个定长的bytesN,序号越界,或是负的序号值。
  3. 如果你通过消息调用一个函数,但在调用的过程中,并没有正确结束(gas不足,没有匹配到对应的函数,或他自己出现异常)。底层操作如call,send,delegatecallcallcode除外,它们不会抛出异常,但它们会通过返回false来表示失败。
  4. 如果在使用new创建一个新合约时,但合约的初化化由于类似3中的原因没有正常完成。
  5. 被除数为0。
  6. 对一个二进制移动一个负的值。
  7. 使用枚举时,将过大值,负值转为枚举类型。
  8. 使用外部函数调用时,被调用的对象并不包含代码。
  9. 如果你的public的函数在没有payable关键字时,却尝试在接收ether(包括构造函数,和回退函数)。
  10. 合约通过一个publicgetter函数(public getter funciton)接收ether
  11. 调用一个未初始化的内部函数。
  12. .transfer()执行失败
  13. assert返回false

当一个用户通过下述方式触发一个异常:

  1. 调用throw
  2. 调用require,但参数值为false。

当上述情况发生时,在Solidity会执行一个回退操作(指令0xfd)。与之相对的是,如果发生运行时异常,或assert失败时,将执行无效操作(指令0xfe)。在上述的情况下,由此促使EVM撤回所有的状态改变。这样做的原因是,没有办法继续安全执行了,因为想要发生的事件并未发生。因为我们想保持交易的原子性(一致性),所以撤销所有操作,让整个交易没有任何影响。

通过assert判断内部条件是否达成,require验证输入的有效性。这样的分析工具,可以假设正确的输入,减少错误。这样无效的操作码将永远不会出现。


作用范围和声明(Scoping And Decarations)

一个变量在声明后都有初始值为字节表示的全0值。也就是所有类型的默认值是典型的零态(zero-state)。举例来说,默认的bool的值为false,uintint的默认值为0

对从byte1byte32定长的字节数组,每个元素都被初始化为对应类型的初始值(一个字节的是一个字节长的全0值,多个字节长的是多个字节长的全零值)。对于变长的数组bytesstring,默认值则为空数组和空字符串。

函数内定义的变量,在整个函数中均可用,无论它在哪里定义)。因为Solidity使用了javascript的变量作用范围的规则。与常规语言语法从定义处开始,到当前块结束为止不同。由此,下述代码编译时会抛出一个异常,Identifier already declared

pragma solidity ^0.4.0;

contract ScopingErrors {
    function scoping() {
        uint i = 0;

        while (i++ < 1) {
            uint same1 = 0;
        }

        while (i++ < 2) {
            uint same1 = 0;// Illegal, second declaration of same1
        }
    }

    function minimalScoping() {
        {
            uint same2 = 0;
        }

        {
            uint same2 = 0;// Illegal, second declaration of same2
        }
    }

    function forLoopScoping() {
        for (uint same3 = 0; same3 < 1; same3++) {
        }

        for (uint same3 = 0; same3 < 1; same3++) {// Illegal, second declaration of same3
        }
    }
    
    function crossFunction(){
       uint same1 = 0;//Illegal
    }

}

另外的,如果一个变量被声明了,它会在函数开始前被初始化为默认值。所以下述例子是合法的。

pragma solidity ^0.4.0;

contract C{
    function foo() returns (uint) {
    // baz is implicitly initialized as 0
    uint bar = 5;
    if (true) {
        bar += baz;
    } else {
        uint baz = 10;// never executes
    }
    return bar;// returns 5
}
}

感谢您的支持


你可能感兴趣的:(区块链)