ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目

思路分析:

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第1张图片

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第2张图片

 

1.1 log日志生成

用curl模拟请求,nginx反向代理80端口来生成日志.

#! /bin/bash

function get_user_agent(){
    
    a0='User-Agent:MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1'
    a1='User-Agent:Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
    a2='User-Agent:Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.57.2 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2' 
    a3='User-Agent:Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; QQBrowser/7.0.3698.400)' 
    a4='User-Agent:Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER' 
    a5='User-Agent:Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5' 
    a6='User-Agent:Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5' 
    a7='User-Agent:Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5' 
    a8='User-Agent:Mozilla/5.0 (Linux; U; Android 2.2.1; zh-cn; HTC_Wildfire_A3333 Build/FRG83D) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1' 
    a9='User-Agent:Mozilla/5.0 (Linux; U; Android 2.2.1; zh-cn; HTC_Wildfire_A3333 Build/FRG83D) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1' 
    a10='User-Agent:Mozilla/5.0 (Linux; U; Android 2.2.1; zh-cn; HTC_Wildfire_A3333 Build/FRG83D) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1' 
    a11='User-Agent:Mozilla/5.0 (Linux; U; Android 2.2.1; zh-cn; HTC_Wildfire_A3333 Build/FRG83D) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1' 
    a12='User-Agent:MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1' 
    a13='User-Agent:MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1' 
    a14='User-Agent:MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1'

    agent_arr=("$a0" "$a1" "$a2" "$a3" "$a4" "$a5" "$a6" "$a7" "$a8" "$a9" "$a10" "$a11" "$a12" "$a13" "$a14")    
    echo "${agent_arr[$((RANDOM % 14  ))]}"
}


#获取小时,将09 转化为9
function get_hour(){
    hour=`date  +%H`
    [ ${hour:0:1} -eq '0' ] && echo ${hour:1:1} || echo $hour
}

#uid1--10000,循环一次,没有国家,每10秒请求一次
function send_1_10000_for1_sleep10_notwithcountry(){
    i=1
    break_num=1;
    while [ true ]
    do
        #if i > 10000; i = 1
        if [ $i -gt 1000  ]; then
            i=1;
            # break_num++
            ((break_num++))
            
            if [ $break_num -eq 2  ]; then
                exit;
            fi
        fi
        
        #造值i的md5,作为uid
        uid=`echo $i | md5sum | awk '{print $1}'`
        
        #user-agent
        user_agent=`get_user_agent`
        
        echo "user_agent:$user_agent"    

        /usr/bin/curl -s -o /dev/null -H "${user_agent}" "http://nn1.hadoop:80?uid=${uid}"
        
        #i++
        ((i++))
        sleep 2

    done
}

#uid5000--15000,循环一次,每10秒请求一次,每500条有一个带有country参数的请求
function send_5000_15000_for1_sleep6_withcountry500(){
    i=500
    break_num=1;
    while [ true ]
    do
        #if i > 10000; i = 1
        if [ $i -gt 1500  ]; then
            i=1;
            # break_num++
            ((break_num++))
            
            if [ $break_num -eq 2  ]; then
                exit;
            fi
        fi
        
        #造值i的md5,作为uid
        uid=`echo $i | md5sum | awk '{print $1}'`

        #user-agent
        user_agent=`get_user_agent`
        echo "user_agent:$user_agent"    
        
        
        
        #每500个发一次带有country的参数
        if [ $((i%50)) -eq 0 ];then
            #国家码
            c_arr=('CN' 'CN' 'CN' 'CN' 'CN' 'US' 'GE' 'GB' 'FR' 'KR' 'AR' 'RU' 'SE' 'SG')
            country=${c_arr[$((RANDOM % 14  ))]}
            #echo "country:$country"    
            
    
            /usr/bin/curl -s -o /dev/null -H "${user_agent}" "http://nn1.hadoop:80?uid=${uid}&country=${country}"
            
        else 
            /usr/bin/curl -s -o /dev/null -H "${user_agent}" "http://nn1.hadoop:80?uid=${uid}"
        
        fi
    
        #i++
        ((i++))
        sleep 2

    done
}

#uid1000--20000,循环一次,有国家,每3秒请求一次
function send_1_20000_for1_sleep3_withcountry(){
    i=1
    break_num=0;
    while [ true ]
    do
        #if i > 10000; i = 1
        if [ $i -gt 2000  ]; then
            i=1;
            # break_num++
            ((break_num++))
            
            if [ $break_num -eq 2  ]; then
                exit;
            fi
        fi
        
        #造值i的md5,作为uid
        uid=`echo $i | md5sum | awk '{print $1}'`
        
        #国家码
        c_arr=('CN' 'CN' 'CN' 'CN' 'CN' 'US' 'GE' 'GB' 'FR' 'KR' 'AR' 'RU' 'SE' 'SG')
        country=${c_arr[$((RANDOM % 14  ))]}
        echo "country:$country"    
        

        #user-agent
        user_agent=`get_user_agent`
        
        echo "user_agent:$user_agent"    

        /usr/bin/curl -s -o /dev/null -H "${user_agent}" "http://nn1.hadoop:80?uid=${uid}&country=${country}"
        
        #i++
        ((i++))
        sleep 1

    done
}


`send_1_10000_for1_sleep10_notwithcountry`
`send_5000_15000_for1_sleep6_withcountry500`
`send_1_20000_for1_sleep3_withcountry`

 

1.2 日志切割 

#! /bin/bash

#log_cut.sh
#切割access.log,并调用put_hdfs.sh 上传到hdfs上

#获取前5分钟的时间戳
function get_timestamp(){
    num=$1
    echo `date -d ${num}' mins ago' +%Y%m%d%H%M%S`
}


#确定当前脚本的位置
cd `dirname $0`
script_base_path=`pwd`

#加载log_cut_config 文件
. ${script_base_path}/log_cut_config

#校验log_cut_config 文件的param 是否有空的,如果有,就终止脚本
#1:无效;0:有效
params_invalid=0

if [ "${ACCESS_LOG_PATH}x" == "x" ]; then
    params_invalid=1
fi

if [ "${NGINX_LOG_BASE_PATH}x" == "x" ]; then
    params_invalid=1
fi

if [ "${NGINX_LOG_WORK_PATH}x" == "x" ]; then
    params_invalid=1
fi

if [ "${NGINX_LOG_BAK_PATH}x" == "x" ]; then
    params_invalid=1
fi

if [ "${NGINX_LOG_GENERATELOG_PATH}x" == "x" ]; then
    params_invalid=1
fi

if [ "${NGINX_LOG_HDFS_BASE_PATH}x" == "x" ]; then
    params_invalid=1
fi

if [ "${LOG_USER}x" == "x" ]; then
    params_invalid=1
fi

#如果有参数没配置,就停止脚本
if [ ${params_invalid} -eq 1 ]; then
    echo "log_cut_config script config params error"
    exit
fi

#校验目录存不存在,如果不存在创建,并且设置hadoop用户组权限
#日志切割工作目录
if [ ! -d ${NGINX_LOG_WORK_PATH} ]; then
    mkdir -p ${NGINX_LOG_WORK_PATH}
    chown hadoop:hadoop ${NGINX_LOG_WORK_PATH}
fi

#日志切割备份目录
if [ ! -d ${NGINX_LOG_BAK_PATH} ]; then
    mkdir -p ${NGINX_LOG_BAK_PATH}
    chown hadoop:hadoop ${NGINX_LOG_BAK_PATH}
fi
#日志切割日志生成目录
if [ ! -d ${NGINX_LOG_GENERATELOG_PATH} ]; then
    mkdir -p ${NGINX_LOG_GENERATELOG_PATH}
    chown hadoop:hadoop ${NGINX_LOG_GENERATELOG_PATH}
fi

#切割后的文件名称:nginxaccess_${IP}_${TIMESTAMP}.log
IP=`hostname -i`
TIMESTAMP=`get_timestamp 5`
file_name=nginxaccess_${IP}_${TIMESTAMP}.log

#mv操作
mv ${ACCESS_LOG_PATH} ${NGINX_LOG_WORK_PATH}/${file_name} 

#kill -USR nginx master进程,让nginx重新生成日志
PID=`ps -aux | grep nginx | grep master | grep -v grep | awk '{print $2}'`
if [ "${PID}x" != "x" ]; then
    kill -USR1 $PID

fi

#压缩切割后的文件 xxx.log  --> xxx.log.gz
/usr/bin/gzip ${NGINX_LOG_WORK_PATH}/${file_name} 

#设置压缩文件的用户组权限为hadoop
chown hadoop:hadoop ${NGINX_LOG_WORK_PATH}/${file_name}.gz

#备份work/xxx.log.gz  到bak/ 目录下
cp ${NGINX_LOG_WORK_PATH}/${file_name}.gz ${NGINX_LOG_BAK_PATH}

#上传到hdfs上,以hadoop 用户调用 put_hdfs.sh 脚本
su - ${LOG_USER} << EOF

nohup ${script_base_path}/put_hdfs.sh ${script_base_path}/log_cut_config >> ${NGINX_LOG_GENERATELOG_PATH}/put_hdfs.log 2>&1 &
exit

EOF




#删除2天前的备份文件,  21号的删19号的
delet_date=`date -d 2' day ago' +%Y%m%d`
rm -rf ${NGINX_LOG_BAK_PATH}/nginxaccess_${IP}_${delet_date}*.gz

 

1.3 上传日志到HDFS 

#! /bin/bash

# 上传/work/目录下的.log.gz 文件到hdfs上
# put_hdfs.sh 分5步,其中 step2 被分成3步,每个循环执行一次
# 如果put数据成功,会执行到step5; 
#如果put数据失败,会执行到step3 就结束

echo "==>step1: start"

#/data/hainiu/nginx_log_bak/script/log_cut_config
log_cut_config_file=$*

. ${log_cut_config_file}


#统计put错误次数
put_errror_count=0

hdfs_put_path=

#遍历/work 目录
for file in `ls ${NGINX_LOG_WORK_PATH}`
do 
    #file: nginxaccess_192.168.142.160_20181221111243.log.gz
    
    #20181221111243.log.gz
    tmp=${file##*_}
    #201812
    year_month=${tmp:0:6}
    #21
    day=${tmp:6:2}
    #/data/hainiu/nginx_log/201812/21
    hdfs_put_path=${NGINX_LOG_HDFS_BASE_PATH}/${year_month}/${day}
    
    echo "==>step2-1: 创建hdfs目录"
    #创建hdfs目录
    mkdir_result=`/usr/local/hadoop/bin/hadoop fs -mkdir -p ${hdfs_put_path} 2>&1`
    if [ "${mkdir_result}x" != "x" ]; then
        #如果报错是报 mkdir: `/mr': File exists ,也不算错
        if [ "${mkdir_result##*: }" != "File exists" ]; then
            echo "/usr/local/hadoop/bin/hadoop fs -mkdir -p ${hdfs_put_path} error"
            echo "error detail:${mkdir_result}"
            exit
        fi
    fi
    echo "==>step2-2: put文件到hdfs上"
    #put文件到hdfs上
    #put /data/hainiu/nginx_log_bak/work/xxx /data/hainiu/nginx_log/201812/21
    
    put_result=`/usr/local/hadoop/bin/hadoop fs -put -f ${NGINX_LOG_WORK_PATH}/${file} ${hdfs_put_path} 2>&1`
    
    #put命令返回结果不为空,就代表报错,累加错误次数
    if [ "${put_result}x" != "x" ]; then
        ((put_errror_count++))
        echo "hadoop fs -put -f ${NGINX_LOG_WORK_PATH}/${file} ${hdfs_put_path} error"
        echo "detail info:${put_result}"
        
    else
        #删除已上传hdfs的文件
        echo "==>step2-3: 删除已上传hdfs的文件"
        
        rm -f ${NGINX_LOG_WORK_PATH}/${file}
    fi

done

echo "==>step3: 如果错误次数大于0,说明有错误的,需要调用retry_put.sh 重试"
#如果错误次数大于0,说明有错误的,需要调用retry_put.sh 重试
if [ $put_errror_count -gt 0 ]; then
    #retry_put.sh 脚本是否在执行,如果在执行,不进行重试;如果没执行,就进行重试
    retry_pid=`ps -aux | grep retry_put.sh | grep -v grep | awk '{print $2}'`
    if [ "${retry_pid}x" != "x" ]; then
        exit
    fi
    
    echo "======> 调用重试脚本"
    #调用重试脚本retry_put.sh
    #nohup ${script_base_path}/retry_put.sh ${script_base_path}/log_cut_config >> ${NGINX_LOG_GENERATELOG_PATH}/retry_put.log 2>&1 &

    #停止运行当前脚本
    exit
    
else

    echo "==>step4: 如果所有都上传成功,就在hdfs上生成个标记成功的文件_SUCCESS_TIMESTAMP"
    #如果所有都上传成功,就在hdfs上生成个标记成功的文件_SUCCESS_TIMESTAMP
    TIMESTAMP=`date +%Y%m%d%H%M%S`
    success_filename=_SUCCESS_${TIMESTAMP}
    
    touchz_result=`/usr/local/hadoop/bin/hadoop fs -touchz ${hdfs_put_path}/${success_filename} 2>&1`
    if [ "${touchz_result}x" != "x" ]; then
        echo "hadoop fs -touchz ${hdfs_put_path}/${success_filename} error"

        echo "error detail: ${touchz_result}"
        
    fi
    
fi
echo "==>step5: end"

 

1.4 错误重试

#!/bin/bash

#retry_put.sh 脚本,可以重试3次,每次重试调用put_hdfs.sh 
# put_hdfs.sh 分5步,其中 step2 被分成3步,每个循环执行一次
# 如果遇到step3:说明重试上传到hdfs文件成功
# 如果遇到step4、step5:说明三次重试失败

#/data/hainiu/nginx_log_bak/script/log_cut_config

echo "==>step1: start"

log_cut_config_file=$*

. ${log_cut_config_file}

script_base_path=${NGINX_LOG_BASE_PATH}/script

for((i=1;i<=3;i++))
do
    echo "==>step2-1: 判断put_hdfs.sh 是否在执行,如果在,就中断重试;否则调用重试"
    #判断put_hdfs.sh 是否在执行,如果在,就中断重试;否则调用重试
    put_hdfs_pid=`ps -aux | grep put_hdfs.sh | grep -v grep | awk '{print $2}'`
    if [ "${put_hdfs_pid}x" != "x" ]; then
        echo "put_hdfs.sh running, exit"
        exit
    fi
    
    echo "==>step2-2: 等待put_hdfs.sh 脚本完成,是个阻塞的调用"
    #等待put_hdfs.sh 脚本完成,是个阻塞的调用
    ${script_base_path}/put_hdfs.sh ${script_base_path}/log_cut_config >> ${NGINX_LOG_GENERATELOG_PATH}/put_hdfs.log 2>&1

    echo "==>step2-3: put_hdfs.sh 执行完,判断 work目录下是否还有.log.gz 文件"
    arr=(`ls ${NGINX_LOG_WORK_PATH} | grep .log.gz$`) 
    arr_lenth=${#arr[*]}
    if [ $arr_lenth -eq 0 ]; then
        echo "==>step3: 重试put_hdfs.sh 成功"
        exit
    else
        sleep 5
    fi
done

#如果重试三次都失败了,需要生成put错误日志
echo "==>step4: 重试失败,,打印失败列表"
echo "失败列表:"
arr=(`ls ${NGINX_LOG_WORK_PATH} | grep .log.gz$`) 
for file in ${arr[*]}
do
    echo $file
done

echo "==>step5: end"

2.1 需求分析

进行nginx日志的ETL
要求对过去一天hdfs上的nginx日志进行ETL取出其中有价值的字段并格式化成hive表能用的结构化数据
提示:
1)使用MR进行数据的格式化;
2)使用OOZIE配置任务的调度和依赖;
3)使用linux的crontab配置hive表的分区添加;
4)MR输出的数据格式使用AVRO,AVRO 表当做一个总表;
5)将MR任务的counter统计结果存储到MYSQL中并使用报表系统进行展示;
6)根据业务场景将avro表转成业务使用的ORC表;
7)使用hive进行多维度的统计将结果存储到mysql中并使用报表系统进行展示;

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第3张图片

 

 

3.1 目录规划

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第4张图片

 

3.2 数据清洗MapReduce

由于这个项目的请求是自己模拟生成的,所以不准备把重点放在这,先熟悉整个流程,在下个博客中我将会重点清洗真实的日志

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第5张图片

 avro的Schema

{
    "type": "record",
    "name": "RunRecord",
    "namespace": "com.hainiu",
    "fields": [{
            "name": "uip",
            "type": "string",
            "default": "null"
        },{
            "name": "datetime",
            "type": "string",
            "default": "null"
        }, {
            "name": "method",
            "type": "string",
            "default": "null"
        }, {
            "name": "uid",
            "type": "string",
            "default": "null"
        },{
            "name": "country",
            "type": "string",
            "default": "null"
        }, {
            "name": "http",
            "type": "string",
            "default": "null"
        } ,{
            "name": "status1",
            "type": "string",
            "default": "null"
        }, {
            "name": "status2",
            "type": "string",
            "default": "null"
        }, {
            "name": "usagent",
            "type": "string",
            "default": "null"
        }
    ]
}

注意:本地多线程环境测试setup不用加载schema

但是集群多机环境需要

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第6张图片

 

4.1 上集群跑shell

准备工作:创建avro,orc表

--avro--
CREATE external TABLE IF NOT EXISTS etlavro007
PARTITIONED BY (`month` string, `day` string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES ('avro.schema.url'='/user/suyuan09/etl/avro/config/etl.avro')
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
LOCATION '/user/suyuan09/etl/etlavro007';

--orc--
CREATE external TABLE `etlorc007`(
`uip` string COMMENT 'from deserializer', 
`datetime` string COMMENT 'from deserializer', 
`uid` string COMMENT 'from deserializer',
`country` string COMMENT 'from deserializer',
`usagent` string COMMENT 'from deserializer')
PARTITIONED BY (`month` string, `day` string)
ROW FORMAT SERDE 
'org.apache.hadoop.hive.ql.io.orc.OrcSerde' 
STORED AS INPUTFORMAT 
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat' 
OUTPUTFORMAT 
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION '/user/suyuan09/etlorc/etlorc007'
TBLPROPERTIES ('orc.compress'='SNAPPY','orc.create.index'='true');

自动shell创建分区,执行mr,移动到表目录下,hive->data,data->mysql

#生成avro,orc分区表
#注意 不要用hadoop命令删除分区目录,再次执行脚本不会创建
fenqu.sh
#!/bin/bash
source /etc/profile
yymm=`date +%Y%m`
dd=`date +%d`
/usr/local/hive/bin/hive -e "use suyuan09;alter table etlavro007 add IF NOT EXISTS partition(month='${yymm}',day='${dd}');"
/usr/local/hive/bin/hive -e "use suyuan09;alter table etlorc007 add IF NOT EXISTS partition(month='${yymm}',day='${dd}');"
------------------------

---avro---
#把log挪到指定目录
log_avro.sh
#! /bin/bash
source /etc/profile
yymm=`date +%Y%m`
dd=`date +%d`
hdfs_path=/user/suyuan09/etl/logavro/${yymm}/${dd}
mkdir_result=`/usr/local/hadoop/bin/hadoop fs -mkdir -p ${hdfs_path} 2>&1`
if [ "${mkdir_result}x" != "x" ]; then
    #如果报错是报 mkdir: `/mr': File exists ,也不算错
    if [ "${mkdir_result##*: }" != "File exists" ]; then
        echo "/usr/local/hadoop/bin/hadoop fs -mkdir -p ${hdfs_path} error"
        echo "error detail:${mkdir_result}"
        exit
    fi
fi
/usr/local/hadoop/bin/hadoop fs -cp hdfs://ns1/data/hainiu/nginx_log/${yymm}/${dd}/nginxaccess_*.gz  hdfs://ns1${hdfs_path}
-------------

#运行mr
avromr.sh
#! /bin/bash
source /etc/profile
#`cd /home/hadoop/etl/jar`
mmdd=`date +%m%d`
yymm=`date +%Y%m`
dd=`date +%d`
hdfs_path=/user/suyuan09/etl/logavro/${yymm}/${dd}
avro_path=/user/suyuan09/etl/avropath/${yymm}/${dd}
`/usr/local/hadoop/bin/hadoop  jar /home/hadoop/etl/jar/181210_hbase-1.0.0-symkmk123.jar etltext2avro -Dtask.id=${mmdd} -Dtask.input.dir=${hdfs_path} -Dtask.base.dir=${avro_path}`
-------------


--orc--
#把avro结果挪到指定目录

avro2orc.sh
#! /bin/bash
source /etc/profile
mmdd=`date +%m%d`
yymm=`date +%Y%m`
dd=`date +%d`
orc_path=/user/suyuan09/etl/avro2orc/${yymm}/${dd}
mkdir_result=`/usr/local/hadoop/bin/hadoop fs -mkdir -p ${orc_path} 2>&1`
if [ "${mkdir_result}x" != "x" ]; then
    #如果报错是报 mkdir: `/mr': File exists ,也不算错
    if [ "${mkdir_result##*: }" != "File exists" ]; then
        echo "/usr/local/hadoop/bin/hadoop fs -mkdir -p ${orc_path} error"
        echo "error detail:${mkdir_result}"
        exit
    fi
fi
/usr/local/hadoop/bin/hadoop fs -cp hdfs://ns1/user/suyuan09/etl/avropath/${yymm}/${dd}/etltext2avro_${mmdd}/part-*.avro  hdfs://ns1${orc_path}
------------

 
#运行orcmr   /user/suyuan09/etl/avro2orc/201812/25/part-m-00000.avro
orcmr.sh
#! /bin/bash
source /etc/profile
mmdd=`date +%m%d`
yymm=`date +%Y%m`
dd=`date +%d`
avro_path=/user/suyuan09/etl/avro2orc/${yymm}/${dd}
orc_path=/user/suyuan09/etl/orcpath/${yymm}/${dd}
`/usr/local/hadoop/bin/hadoop  jar /home/hadoop/etl/jar/181210_hbase-1.0.0-symkmk123.jar etlavro2orc -Dtask.id=${mmdd} -Dtask.input.dir=${avro_path} -Dtask.base.dir=${orc_path}`
--------------------


#把orc挪到分区目录  

#! /bin/bash
source /etc/profile
mmdd=`date +%m%d`
yymm=`date +%Y%m`
dd=`date +%d`
/usr/local/hadoop/bin/hadoop fs -cp hdfs://ns1/user/suyuan09/etl/orcpath/${yymm}/${dd}/etlAvro2Orc_${mmdd}/part-*  hdfs://ns1/user/suyuan09/etlorc/etlorc007/month=${yymm}/day=${dd}
---------
#自动从hive到mysql脚本
hive2mysql.sh
#! /bin/bash
source /etc/profile
yymmdd=`date +%Y%m%d`
/usr/local/hive/bin/hive  -e "use suyuan09;SELECT 
COALESCE(uip, 'ALL'), 
COALESCE(SUBSTR(datetime,1,12), 'ALL'),
count(*) FROM etlorc007 GROUP BY uip, SUBSTR(datetime,1,12) GROUPING SETS ( (uip,SUBSTR(datetime,1,12)),uip,SUBSTR(datetime,1,12),() );" > /home/hadoop/etl/orc2mysql/my${yymmdd}
---------------------------------
#data->mysql脚本
data2mysql.sh
#! /bin/bash
source /etc/profile
yymmdd=`date +%Y%m%d`
#mysql -h 172.33.101.123 -P 3306 -u tony -pYourPassword -D YourDbName <<EOF
/bin/mysql -h192.168.65.160 -p3306 -ureport_user -p12345678 -Dreport <<EOF

LOAD DATA LOCAL INFILE "/home/hadoop/etl/orc2mysql/my${yymmdd}" INTO TABLE suyuan09_etl_orc2mysql FIELDS TERMINATED BY '\t';

EOF

 4.2oozie设置任务链

coordinator.xml

修改/examples/apps/cron-schedule中的coordinator.xml

修改frequency中的定时方式

修改timezone为GMT+0800

修改完成后上传到hdfs指定位置

 

job.properties

修改namenode、jobTracker、queueName、exampleRoot

修改定时调度的起始时间start和终止时间end

修改workflowAppUri,指定workflow.xml文件的路径为ssh

 

workflow.xml

添加shell脚本工作流

将创建分区脚本,执行mapreduce任务脚本,mv数据脚本,多维度查询脚本,导入数据到mysql脚本 按照顺序依次添加到工作流中

修改完成后上传到hdfs指定位置

 

workflow.xml
<workflow-app xmlns="uri:oozie:workflow:0.2" name="ssh-wf">
    <start to="fenqu"/>

    <action name="fenqu">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/fenqu.shcommand>
            
        ssh>
        <ok to="log_avro"/>
        <error to="fail"/>
    action>
    
  
    <action name="log_avro">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/log_avro.shcommand>
            
        ssh>
        <ok to="avromr"/>
        <error to="fail"/>
    action>
    
    <action name="avromr">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/avromr.shcommand>
            
        ssh>
        <ok to="fail"/>
        <error to="avro2orc"/>
    action>
    
    <action name="avro2orc">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/avro2orc.shcommand>
            
        ssh>
        <ok to="orcmr"/>
        <error to="fail"/>
    action>
    
       <action name="orcmr">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/orcmr.shcommand>
            
        ssh>
        <ok to="fail"/>
        <error to="orc2etl"/>
    action>
   
       <action name="orc2etl">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/orc2etl.shcommand>
            
        ssh>
        <ok to="hive2mysql"/>
        <error to="fail"/>
    action>
    
       <action name="orc2etl2">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/orc2etl.shcommand>
            
        ssh>
        <ok to="hive2mysql"/>
        <error to="fail"/>
    action>
    
       <action name="hive2mysql">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/hive2mysql.shcommand>
            
        ssh>
        <ok to="data2mysql"/>
        <error to="fail"/>
    action>
    
        <action name="data2mysql">
        <ssh xmlns="uri:oozie:ssh-action:0.1">
            <host>[email protected]host>
            <command>/home/hadoop/etl/data2mysql.shcommand>
            
        ssh>
        <ok to="end"/>
        <error to="fail"/>
    action>

    <kill name="fail">
        <message>SSH action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]message>
    kill>

    <end name="end"/>
workflow-app>

其中,由于我自己集群oozie执行MapReduce会判错,但是在yarn上看执行是successd的.结果也生成了.

所以基于oozie的原理是有向无环图.所以把OK->fail,error->下一个执行的任务.

我大胆猜测并成功了.

ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目_第7张图片

5.1报表展示

借助开源报表显示 https://github.com/xianrendzw/EasyReport

这里由于这个项目侧重点在一个ETL流程的串起整体运作,在下一个项目我将侧重在web的显示上.

ETL第二篇来喽: https://www.cnblogs.com/symkmk123/p/10197633.html  

转载于:https://www.cnblogs.com/symkmk123/p/10197467.html

你可能感兴趣的:(ETL项目1:大数据采集,清洗,处理:使用MapReduce进行离线数据分析完整项目)