《Digital Integrated Circuit》读后笔记 (三)

本文仅为个人娱乐分享,请勿用作其他用途

chapter six Static CMOS Design

  1. combinational logic

sequential logic a combinational logic portion and a module that holds the state

  1. Static CMOS Design

static complementary CMOS output is either V D D V_{DD} VDD or V S S V_{SS} VSS through a low-resistance path.

dynamic circuit class relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes. simpler and faster sensitive to noise

  • complementary CMOS
  • ratioed logic(pseudo-NMOS and DCVSL)
  • pass-transistor logic
  1. Complementary CMOS

pull-up network PUN PMOS

pull-down network PDN NMOS

series devices and parallel devices duality principle

N-input logic gate is 2N

sub-nets(SN)


Static properties: (Noise Margin)

《Digital Integrated Circuit》读后笔记 (三)_第1张图片

  • A=B=0->1: a strong pull-up
  • A=1, B=0->1: V T n 1 = V t n 0 V_{Tn1}=V_{tn0} VTn1=Vtn0
  • A=0->1, B=0: V T n 2 = V t n 0 + γ ( ( ∣ 2 ϕ T + V i n t ∣ − 2 ϕ T ) ) V_{Tn2}=V_{tn0}+\gamma((\sqrt{|2\phi_{T}+V_{int}|}-\sqrt{2\phi_{T}})) VTn2=Vtn0+γ((2ϕT+Vint 2ϕT ))

Propagation Delay:

depends upon the input patterns

t p L H = 0.69 R p C L t_{pLH}=0.69R_pC_L tpLH=0.69RpCL

t p H L = 0.69 ( 2 R N C L ) t_{pHL}=0.69(2R_NC_L) tpHL=0.69(2RNCL)

To make the same delay, NMOS devices must be made twice as wide. PMOS remain unchanged.

High-to-low propagation delay depends on the state of the internal nodes.

PMOS devices have a lower mobility relative to NMOS devices, stacking devices in series must be avoided as much as possible.

NAND is better than NOR.


《Digital Integrated Circuit》读后笔记 (三)_第2张图片
t p H L = 0.69 ( R 1 C 1 + ( R 1 + R 2 ) C 2 + ( R 1 + R 2 + R 3 ) C 3 + ( R 1 + R 2 + R 3 + R 4 ) C L ) t_{pHL}=0.69(R_1C_1+(R_1+R_2)C_2+(R_1+R_2+R_3)C_3+(R_1+R_2+R_3+R_4)C_L) tpHL=0.69(R1C1+(R1+R2)C2+(R1+R2+R3)C3+(R1+R2+R3+R4)CL)

= 0.69 R N ( C 1 + 2 C 2 + 3 C 3 + 4 C L ) =0.69R_N(C_1+2C_2+3C_3+4C_L) =0.69RN(C1+2C2+3C3+4CL)


Conclusion:

  • Significant implementation area. 2N gate
  • propagation delay is a function of the fan-in.
  • t p = a 1 F I + a 2 F I 2 + a 3 F O t_p=a_1FI+a_2FI^2+a_3FO tp=a1FI+a2FI2+a3FO

Solution:

  • Transistor Sizing be used with caution

  • Progressive Transistor Sizing: M 1 > M 2 > M 3 > M 4 M_1>M_2>M_3>M_4 M1>M2>M3>M4 not simple in a real layout

  • Input Re-Ordering: critical path

    《Digital Integrated Circuit》读后笔记 (三)_第3张图片
  • Logic Restructuring


t p = t p 0 ( 1 + C e x t γ C g ) = t p 0 ( 1 + f / γ ) t_p=t_{p0}(1+\frac{C_{ext}}{\gamma C_{g}})=t_{p0}(1+f/\gamma) tp=tp0(1+γCgCext)=tp0(1+f/γ)

Modify: t p = t p 0 ( p + g f / γ ) t_p=t_{p0}(p+gf/\gamma) tp=tp0(p+gf/γ)

f f f :electrical effort

p p p: the ratio of the intrinstic delays of the complex gate and the simple inverter

g g g: logic effort

h h h: gate effort

Make t p t_p tp minimal: f 1 g 1 = f 2 g 2 = f 3 g 3 = . . . = f N g N f_1g_1=f_2g_2=f_3g_3=...=f_Ng_N f1g1=f2g2=f3g3=...=fNgN

F = f 1 f 2 f 3 f 4 . . f N = C L / C g 1 F=f_1f_2f_3f_4..f_N=C_L/C_{g1} F=f1f2f3f4..fN=CL/Cg1 G = g 1 g 2 . . . g N G=g_1g_2...g_N G=g1g2...gN H = F G H=FG H=FG

h = F G N = H N h=\sqrt[N]{FG} = \sqrt[N]{H} h=NFG =NH


Power Consumption:

dynamic power dissipation: α 0 − > 1 C L V D D 2 f \alpha_{0->1}C_LV_{DD}^{2}f α0>1CLVDD2f switching activity

Logic function: α 0 − > 1 = p 0 p 1 = p 0 ( 1 − p 0 ) \alpha_{0->1}=p_{0}p_{1}=p_{0}(1-p_{0}) α0>1=p0p1=p0(1p0)

Assuming the inputs are independent and uniformly distributed

α 0 − > 1 = N 0 2 N N 1 2 N \alpha_{0->1}=\frac{N_{0}}{2^{N}}\frac{N_{1}}{2^{N}} α0>1=2NN02NN1

  • a conditional probability
  • glitches/dynamic hazards long chains of gates

Solutions: To reduce the switching factor

  • Logic Restructuring

    • Chain structure
    • Tree structure
  • Input ordering

    postpone the introduction of signals with a high transition rate

  • Time-multiplexing resources

    can minimize the implementation area. Very few transitions

  • Glitch Reduction by balancing signal paths

    Make every gate change simultaneously Redesigning the network

  1. Ratioed Logic

《Digital Integrated Circuit》读后笔记 (三)_第4张图片
reduce robustness and extra power dissipation reduce number of gates N + 1 N+1 N+1

pseudo-NMOS gate nominal low output is not 0V

ratioed: voltage swing on the output and the overall functionality of the gate depends upon the ratio between the NMOS and PMOS sizes.

V O L ≈ μ p W p μ n W n ∣ V D S A T ∣ V_{OL}\approx\frac{\mu_pW_p}{\mu_nW_n}|V_{DSAT}| VOLμnWnμpWpVDSAT To make V O L V_{OL} VOL smaller, PMOS needs to be sized much smaller, however, it is bad to propagation delay.

static power: P l o w = V D D I l o w P_{low}=V_{DD}I_{low} Plow=VDDIlow


differential logic and positive feedback:

DCVSL differetial cascode voltage switch logic

《Digital Integrated Circuit》读后笔记 (三)_第5张图片
have rail-to-rail swing static power dissipation is eliminated

Of course, short circuit path still exists.

  1. Pass-transistor logic
《Digital Integrated Circuit》读后笔记 (三)_第6张图片

Reduced number of devices low capacitance

high output is V D D − V T n V_{DD}-V_{Tn} VDDVTn low switching energy

pass-transistor gates cannot be cascaded by connecting the output of a pass gate to the gate input of another pass transistor.

image-20200326104838616

may cosume static power when the output is high. insufficient to turn off the PMOS transistor of CMOS


Differential Pass Transistor Logic:

CPL DPL

  • complex gates such as XORs can be realized with a small number of transistors
  • CPL is static gates

Solutions:

  • Level restoration:

    level restorer

    《Digital Integrated Circuit》读后笔记 (三)_第7张图片

can eliminates any static power dissipation in the inverter.

the resistance of M n M_n Mn and M r M_r Mr must be such that the voltage at node X X X drops below the threshold of the inverter.

The rise time of the gate is further negatively affected, since, the level-restoring transistor M r M_r Mr fights the decrease in voltage at node X X X


swing-restored pass transistor logic

《Digital Integrated Circuit》读后笔记 (三)_第8张图片
  • Multiple-threshold transistors:

    zero-threshold transistor can make the subthreshold currents

  • Transmission gate logic:

    《Digital Integrated Circuit》读后笔记 (三)_第9张图片

NMOS devices pass a strong 0 but a weak 1, while PMOS transistor pass a strong 1 but a weak 0.

rail-to-rail swing

can realize multiplexer and XOR gate using less transistors.

R e q R_{eq} Req is relatively constant.


《Digital Integrated Circuit》读后笔记 (三)_第10张图片
t p = 0.69 ∑ k = 0 n C R e q k = 0.69 C R e q n ( n + 1 ) 2 t_p=0.69\displaystyle \sum^{n}_{k=0}CR_{eq}k=0.69CR_{eq}\frac{n(n+1)}{2} tp=0.69k=0nCReqk=0.69CReq2n(n+1)

solution:

break the chain and insert buffers every n n n switches.

t p = 0.69 [ n m C R e q m ( m + 1 ) 2 ] + ( n m − 1 ) t b u f t_{p}=0.69[\frac{n}{m}CR_{eq}\frac{m(m+1)}{2}]+(\frac{n}{m}-1)t_{buf} tp=0.69[mnCReq2m(m+1)]+(mn1)tbuf

m o p t = 1.7 t p b u f C R e q ≈ 3 m_{opt}=1.7\sqrt{\frac{t_{pbuf}}{CR_{eq}}}\approx3 mopt=1.7CReqtpbuf 3

  1. Dynamic CMOS Design

to avoid the static power dissipation

precharge and evaluation phases determined by the signal C L K CLK CLK.

《Digital Integrated Circuit》读后笔记 (三)_第11张图片
C L K = 1 CLK=1 CLK=1: evaluation phase

C L K = 0 CLK=0 CLK=0: precharge phase

During evaluation phase, the output can make at most one transition.

  • number of transistors: N + 2 N+2 N+2 numbers

  • non-ratioed

  • only consumes dynamic power

  • faster switching speeds


Speed and Power dissipation of dynamic logic

  • t p L H = 0 t_{pLH}=0 tpLH=0
  • no glitches only one transition
  • a higher switching activity: α 0 − > 1 = p 0 \alpha_{0->1}=p_0 α0>1=p0

Problems:

  • charge leakage:

《Digital Integrated Circuit》读后笔记 (三)_第12张图片
Source 1 and 2: reverse-biased diode and sub-threshold leakage

require a minimal clock rate

solution: adding a bleeder transistor

《Digital Integrated Circuit》读后笔记 (三)_第13张图片

  • charge sharing:

    share capacitor C L C_{L} CL and C a C_{a} Ca

    we need to keep the value of Δ V o u t \Delta V_{out} ΔVout below ∣ V t p ∣ |V_{tp}| Vtp

    solution:

    precharge critical internal nodes

  • Capacitive coupling:

    back-gate coupling

    example: a dynamic two-input NAND gate drives a static NAND gate

  • clock-feedthrough:

    causes the output of the dynamic node to rise above V D D V_{DD} VDD on the low-to-high transition of the clock.

    may cause forward-biased.

《Digital Integrated Circuit》读后笔记 (三)_第14张图片
《Digital Integrated Circuit》读后笔记 (三)_第15张图片

Cascading Dynamic gates:

the inputs can only make a single 0->1 transition during the evaluation period.


Domino Logic:

consist of an n-type dynamic logic block followed by a static inverter.

《Digital Integrated Circuit》读后笔记 (三)_第16张图片
  • pure Domino design has become rare.

  • high speed only a rising edge delay exists.

Dual-rail Domino

n p np np-CMOS

《Digital Integrated Circuit》读后笔记 (三)_第17张图片

你可能感兴趣的:(数字电路)