tensorflow练习01-简单神经网络(单层)

import tensorflow as tf
import numpy as np
#create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1+0.3

# #create tensorflow structure start###
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) #权重初始化
biases=tf.Variable(tf.zeros([1]))  #偏差值初始化
y = Weights * x_data + biases     #预测值构造
loss=tf.reduce_mean(tf.square(y - y_data)) #损失函数
optimizer = tf.train.GradientDescentOptimizer(0.5)  #损失函数计算梯度学习率设定0.5
train = optimizer.minimize(loss)  #训练减小损失函数

init=tf.initialize_all_variables()   #初始化所有变量
# #create tensorflow structure end###

sess = tf.Session()
sess.run(init)   #激活网络:初始化
for step in range(201):
    sess.run(train)  #训练
    if ((step % 20) == 0):
        print(step,sess.run(Weights),sess.run(biases))
sess.close()   #关闭对话

你可能感兴趣的:(tensorflow练习01-简单神经网络(单层))