今天我要讲的内容是布谷鸟算法,英文叫做Cuckoo search (CS algorithm)。首先还是同样,介绍一下这个算法的英文含义, Cuckoo是布谷鸟的意思,啥是布谷鸟呢,是一种叫做布谷的鸟,o(∩_∩)o ,这种鸟她妈很懒,自己生蛋自己不养,一般把它的宝宝扔到别的种类鸟的鸟巢去。但是呢,当孵化后,遇到聪明的鸟妈妈,一看就知道不是亲生的,直接就被鸟妈妈给杀了。于是这群布谷鸟宝宝为了保命,它们就模仿别的种类的鸟叫,让智商或者情商极低的鸟妈妈误认为是自己的亲宝宝,这样它就活下来了。 Search指的是搜索,这搜索可不是谷歌一下,你就知道。而是搜索最优值,举个简单的例子,y=(x-0.5)^2+1,它的最小值是1,位置是(0.5,1),我们要搜索的就是这个位置。
现在我们应该清楚它是干嘛的了吧,它就是为了寻找最小值而产生的一种算法,有些好装X的人会说,你傻X啊,最小值不是-2a/b吗,用你找啊? 说的不错,确实是,但是要是我们的函数变成 y=sin(x^3+x^2)+e^cos(x^3)+log(tan(x)+10,你怎么办吶?你解不了,就算你求导数,但是你知道怎么解导数等于0吗?所以我们就得引入先进的东西来求最小值。
为了使大家容易理解,我还是用y=(x-0.5)^2+1来举例子,例如我们有4个布谷鸟蛋(也就是4个x坐标),鸟妈妈发现不是自己的宝宝的概率是0.25,我们x的取值范围是[0,1]之间,于是我们就可以开始计算了。
目标:求x在[0,1]之内的函数y=(x-0.5)^2+1最小值
(1)初始化x的位置,随机生成4个x坐标,x1=0.4,x2=0.6,x3=0.8,x4=0.3 ——> X=[0.4, 0.6 ,0.8, 0.3]
(2)求出y1~y4,把x1~x4带入函数,求得Y=[1,31, 1.46, 1.69, 1.265],并选取当前最小值ymin= y4=1.265
(3)开始定出一个y的最大值为Y_global=INF(无穷大),然后与ymin比较,把Y中最小的位置和值保留,例如Y_global=INF>ymin=1.265,所以令Y_global=1.265
(4)记录Y_global的位置,(0.3,1.265)。
(5)按概率0.25,随机地把X中的值过塞子,选出被发现的蛋。例如第二个蛋被发现x2=0.6,那么他就要随机地变换位子,生成一个随机数,例如0.02,然后把x2=x2+0.02=0.62,之后求出y2=1.4794。那么X就变为了X=[0.4, 0.62 ,0.8, 0.3],Y=[1,31, 1.4794, 1.69, 1.265]。
(6)进行莱维飞行,这名字听起来挺高大上,说白了,就是把X的位置给随机地改变了。怎么变?有一个公式x=x+alpha*L。
L=S*(X-Y_global)*rand3
S=[rand1*sigma/|rand2|]^(1/beta)
sigma=0.6966
beta=1.5
alpha=0.01
rand1~rand3为正态分布的随机数
然后我们把X=[0.4, 0.6 ,0.8, 0.3]中的x1带入公式,首先随机生成rand1=-1.2371,rand2=-2.1935,rand3=-0.3209,接下来带入公式中,获得x1=0.3985
之后同理计算:
x2=0.6172
x3=0.7889
x4=0.3030
(7)更新矩阵X,X=[0.3985, 0.6172, 0.7889, 0.3030]
(8)计算Y=[1.3092, 1.4766, 1.6751, 1.2661],并选取当前最小值ymin= y4=1.2661,然后与ymin比较,把Y中最小的位置和值保留,例如Y_global=1.265 (9)返回步骤(5)用更新的X去循环执行,经过多次计算即可获得y的最优值和的最值位置(x,y) 最后附上别人写的代码:% -----------------------------------------------------------------
% Cuckoo Search (CS) algorithm by Xin-She Yang and Suash Deb %
% Programmed by Xin-She Yang at Cambridge University %
% Programming dates: Nov 2008 to June 2009 %
% Last revised: Dec 2009 (simplified version for demo only) %
% -----------------------------------------------------------------
% Papers -- Citation Details:
% 1) X.-S. Yang, S. Deb, Cuckoo search via Levy flights,
% in: Proc. of World Congress on Nature & Biologically Inspired
% Computing (NaBIC 2009), December 2009, India,
% IEEE Publications, USA, pp. 210-214 (2009).
% http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.1594v1.pdf
% 2) X.-S. Yang, S. Deb, Engineering optimization by cuckoo search,
% Int. J. Mathematical Modelling and Numerical Optimisation,
% Vol. 1, No. 4, 330-343 (2010).
% http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.2908v2.pdf
% ----------------------------------------------------------------%
% This demo program only implements a standard version of %
% Cuckoo Search (CS), as the Levy flights and generation of %
% new solutions may use slightly different methods. %
% The pseudo code was given sequentially (select a cuckoo etc), %
% but the implementation here uses Matlab's vector capability, %
% which results in neater/better codes and shorter running time. %
% This implementation is different and more efficient than the %
% the demo code provided in the book by
% "Yang X. S., Nature-Inspired Metaheuristic Algoirthms, %
% 2nd Edition, Luniver Press, (2010). " %
% --------------------------------------------------------------- %
% =============================================================== %
% Notes: %
% Different implementations may lead to slightly different %
% behavour and/or results, but there is nothing wrong with it, %
% as this is the nature of random walks and all metaheuristics. %
% -----------------------------------------------------------------
% Additional Note: This version uses a fixed number of generation %
% (not a given tolerance) because many readers asked me to add %
% or implement this option. Thanks.%
function [bestnest,fmin]=cuckoo_search_new(n)
if nargin<1,
% Number of nests (or different solutions)
n=25;
end
% Discovery rate of alien eggs/solutions
pa=0.25;
%% Change this if you want to get better results
N_IterTotal=1000;
%% Simple bounds of the search domain
% Lower bounds
nd=15;
Lb=-5*ones(1,nd);
% Upper bounds
Ub=5*ones(1,nd);
% Random initial solutions
for i=1:n,
nest(i,:)=Lb+(Ub-Lb).*rand(size(Lb));
end
% Get the current best
fitness=10^10*ones(n,1);
[fmin,bestnest,nest,fitness]=get_best_nest(nest,nest,fitness);
N_iter=0;
%% Starting iterations
for iter=1:N_IterTotal,
% Generate new solutions (but keep the current best)
new_nest=get_cuckoos(nest,bestnest,Lb,Ub);
[fnew,best,nest,fitness]=get_best_nest(nest,new_nest,fitness);
% Update the counter
N_iter=N_iter+n;
% Discovery and randomization
new_nest=empty_nests(nest,Lb,Ub,pa) ;
% Evaluate this set of solutions
[fnew,best,nest,fitness]=get_best_nest(nest,new_nest,fitness);
% Update the counter again
N_iter=N_iter+n;
% Find the best objective so far
if fnew
Ub;
ns_tmp(J)=Ub(J);
% Update this new move
s=ns_tmp;
%% You can replace the following by your own functions
% A d-dimensional objective function
function z=fobj(u)
%% d-dimensional sphere function sum_j=1^d (u_j-1)^2.
% with a minimum at (1,1, ...., 1);
z=sum((u-1).^2);