- Python 框架 之 Anaconda 下 Django 环境的快速搭建与验证的相关说明
仙魁XAN
pythonpythonanacondadjango
Python框架之Anaconda下Django环境的快速搭建与验证的相关说明目录Python框架之Anaconda下Django环境的快速搭建与验证的相关说明一、简单介绍二、实现原理三、环境四、涉及命令五、搭建具体步骤1、打开AnacondaNavigator2、Create构建一个环境,选择自己需要的python版本即可3、AnacondaPrompt打开命令行操作4、condainfo--e
- MySQL基础学习总结(二)_select round(3
字节全栈_kYu
mysql学习数据库
|abc ||abc ||abc ||abc ||abc ||abc ||abc ||abc ||abc ||abc |+---------+selectabcfromemp;ERROR1054(42S22):Unknowncolumn'abc'in'fieldlist'这样肯定报错,因为会把abc当做一个字段的名字,去emp表中找abc字段去了。**结论:select后面可以
- 使用PyInstaller将Python项目代码打包成exe
培根芝士
Pythonpython开发语言
PyInstaller是一个非常强大的工具,用于将Python脚本打包成独立的可执行文件(如.exe文件),使得Python应用程序可以在没有安装Python环境的机器上运行。工作原理PyInstaller的核心目标是将Python脚本及其依赖的模块打包成一个独立的可执行文件。它的工作原理可以分为以下几个步骤:(1)分析脚本依赖PyInstaller会分析你的Python脚本,找出所有导入的模块(
- 分布式系统架构设计原理与实战:分布式缓存的设计与实现
AI天才研究院
计算计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍分布式系统架构设计原理与实战:分布式缓存的设计与实现作者:禅与计算机程序设计艺术背景介绍1.1分布式系统的基本概念分布式系统是指由多个autonomouscomputer组成,这些computer通过网络相互协作来完成共同的task。它允许multiplecomputers在同一个时间访问sharedresources,同时保证systemconsistency。1.2什么是分布式缓存
- webpack 面试题整理
iijik55
面试学习路线阿里巴巴android前端后端
文章目录webpack面试题整理谈谈你对Webpack的理解Webpack的打包过程/打包原理/构建流程?Webpack中loader的作用/loader是什么?常见的loader有哪些?Plugin有什么作用?/Plugin是什么常见的Plugin有哪些Webpack插件的执行顺序(加载机制)?Webpack中Loader和Plugin的区别Webpack做过哪些优化手段?有哪些优化手段?tre
- Stable Diffusion 3 与 OpenAI 的 DALL-E 3 谁才是AI绘画的扛把子?
kcarly
杂谈StableDiffusion使用stablediffusionAI作画
StableDiffusion3和OpenAI的DALL-E3是当前最顶尖的两种AI图像生成模型,它们在技术架构、应用场景和性能表现上各有特点。以下从多个角度详细比较这两种模型:1.开发背景与架构StableDiffusion3是由StabilityAI开发的开源模型,基于扩散Transformer架构和流匹配(FlowMatching)技术,支持多种参数配置(从800M到8B),能够满足多样化的
- C语言实现图像二值化变换项目源码
爽新全效瓷兔膏
本文还有配套的精品资源,点击获取简介:本项目提供了一个C语言编程案例,专门用于解决图像处理中的“百马百担”问题,即图像二值化。项目展示如何使用C语言进行图像的读取、处理和保存,特别是二值化转换的实现,通过设定阈值将图像简化为黑白色调,以突出其特征。源码中包括了图像读取、阈值设置、像素遍历和图像写入等关键步骤,适合C语言学习者和图像处理领域开发者学习实践。1.C语言图像处理简介简介C语言作为一种高效
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 2025最新版Java面试八股文大全
m0_74823452
java面试开发语言
一、Java并发面试题1、ThreadLocal1.1谈谈你对ThreadLocal的理解?ThreadLocal的作用主要是做数据隔离,填充的数据只属于当前线程,变量的数据对别的线程而言是相对隔离的。它不是针对程序的全局变量,只是针对当前线程的全局变量。1.2ThreadLocal底层实现原理?Threadlocal内部有一个非常关键的内部类ThreadlocalMap,里面定义了一个由key-
- 探索神经网络的奥秘:从基础理论到Python实践
仲毓俏Alanna
探索神经网络的奥秘:从基础理论到Python实践【下载地址】第一章神经网络如何工作附Python神经网络编程.pdf分享本资源文件提供了关于神经网络基础知识的详细介绍,并附带了一个Python神经网络编程的PDF文件。通过学习本资源,您将能够理解神经网络的基本工作原理,并掌握如何使用Python进行神经网络编程项目地址:https://gitcode.com/Resource-Bundle-Col
- 探索高效图像识别:基于OpenCV的形状匹配利器
崔庭盼Melvina
探索高效图像识别:基于OpenCV的形状匹配利器【下载地址】形状匹配find_scaled_shape_model资源文件本资源文件提供了使用OpenCV实现Halcon中算子`find_scaled_shape_model`的功能。该功能主要用于在图像中查找与模板形状相似的目标,并支持缩放变换。具体实现细节和使用方法可以参考相关博客文章项目地址:https://gitcode.com/open-
- LeetCode:406. 根据身高重建队列(Java 贪心)
Cosmoshhhyyy
LeetCodeleetcode算法职场和发展
目录406.根据身高重建队列题目描述:实现代码与解析:贪心原理思路:406.根据身高重建队列题目描述:假设有打乱顺序的一群人站成一个队列,数组people表示队列中一些人的属性(不一定按顺序)。每个people[i]=[hi,ki]表示第i个人的身高为hi,前面正好有ki个身高大于或等于hi的人。请你重新构造并返回输入数组people所表示的队列。返回的队列应该格式化为数组queue,其中queu
- 第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局
python算法(魔法师版)
数据挖掘机器学习人工智能深度学习神经网络生成对抗网络边缘计算
——从算法到芯片的全栈式优化实践随着AI应用向移动终端与物联网设备渗透,模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系,在保持模型性能的前提下,实现参数量与能耗的指数级压缩。本文从技术原理、工程实现到落地应用,完整解析其全链路压缩技术体系。第一章算法层创新:结构化压缩与动态稀疏化1.1非均匀结构化剪枝技术DeepSeek提出**“敏感度感知通道剪枝”(SAC
- 『大模型笔记』视觉语言模型解释
AI大模型前沿研究
大模型笔记LLMVLM视觉语言模型语言模型大模型人工智能
视觉语言模型解释文章目录一.视觉语言模型解析1.什么是视觉语言模型?2.开源视觉语言模型概览3.如何找到合适的视觉语言模型MMMUMMBench4.技术细节5.使用变压器(transformers)运用视觉语言模型6.使用TRL微调视觉语言模型二.参考文章一.视觉语言模型解析视觉语言模型是一类能够同时从图像和文本中学习,以处理从视觉问题回答到图像描述等多种任务的模型。本文将深入探讨视觉语言模型的核
- Docker Ubuntu 20.04执行CI任务交叉编译riscv64-linux-gcc时no such file or directory
Wentao Wu
第一次接触rsicv64的交叉编译环境(其他交叉编译环境也基本没接触过,只是知道概念和原理),目前的需求是需要在gitlab上给一套rsicv64-linux-gcc执行CI任务,默认直接在本地服务器执行交叉编译,需要经常清理服务器文件,且成熟的开发环境不适合作为测试环境来运行,因此考虑将CI任务直接在Docker中执行,也需要配置最小化且测试环境最干净的Docker镜像。手工在服务器执行,全套流
- 计算机视觉领域的轻量化模型——GhostNet 模型
DuHz
边缘计算轻量化模型计算机视觉人工智能算法深度学习神经网络边缘计算网络
GhostNet模型详解GhostNet是一个高效的轻量化卷积神经网络模型,专为资源受限的设备(如移动设备和嵌入式系统)设计。它的核心创新是Ghost模块,该模块通过生成更多的特征图来减少计算资源消耗。GhostNet适用于实时计算任务,如图像分类和物体检测,同时在保持较高准确率的基础上,优化了计算效率。目录GhostNet背景Ghost模块概述GhostNet网络架构Ghost模块的数学原理Gh
- Tomcat:应用加载原理分析
IT巅峰技术
Tomcat基础知识中间件tomcat服务器java架构师分布式
前情回顾上一篇文章主要了解了一下Tomcat启动入口,以及初步的分析了Tomcat的启动流程,下面我们将会解密Tomcat应用部署的实际流程。一、直观对比虽然前面已经说了那么多关于Tomcat的东西,但是我相信绝大部分同学应该都没有专门的去研究过Tomcat的内部实现。我们接触最多的应该还是上传一个war包丢在webapps目录下,然后重启一下Tomcat服务器(甚至不重启)。下面我们以图形的形式
- python爬虫之JS逆向入门,了解JS逆向的原理及用法(18)
盲敲代码的阿豪
python之爬虫系统教学python爬虫javascriptJS逆向
文章目录1.JS逆向是什么?2、如何分析加密参数并还原其加密方式?2.1分析JS加密的网页2.2编写python代码还原JS加密代码3、案例测试4、操作进阶(通过执行第三方js文件实现逆向)4.1python第三方模块(execjs)4.2调用第三方js文件完成逆向操作4.3总结1.JS逆向是什么?什么是JS加密?我们在分析某些网站的数据接口时,经常会遇到一些密文参数,这些参数实际就是通过Java
- 新春特辑:人工智能专题大复盘
互联互通社区
人工智能大数据区块链python编程语言
播洒一年的阳光,收获一路的辉煌;挥洒一年的汗水,绽放一路的明媚;付出一年的辛苦,装点一路的幸福;感谢一年的努力,创造一路的奇迹。新的一年,愿与你再扬帆济海,创造美好精彩!人工智能:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟
- SpringSecurity相关面试试题及答案解析
HappyAcmen
java面试题相关总结面试职场和发展
SpringSecurity是一个功能强大且高度可定制的Java安全框架,主要用于保护基于Java的应用程序。文章目录1.核心功能2.核心组件3.工作原理4.相关试题1.什么是SpringSecurity?它的主要功能是什么?2.简述一下Authentication和Authorization的区别?3.SpringSecurity的核心组件有哪些?4.如何在SpringSecurity中实现身份
- 咱们一起学C++第四十篇:之C++递归与运算符基础
一杯年华@编程空间
咱们一起学习C++c++strutskafkaintellij-ideaspringcloudspringbootjava-ee
咱们一起学C++第四十篇:之C++递归与运算符基础在C++学习的征程中,我们共同努力,不断探索这门语言的深度与广度。此前,我们学习了switch语句和goto关键字,今天,我们将深入研究递归这一有趣且实用的编程技巧,以及C++运算符的基础知识,包括运算符的优先级和自增自减运算符。这些知识是构建复杂程序逻辑和高效代码的重要基石。一、递归:函数自身的奇妙调用(一)递归的概念与原理递归是一种编程技巧,允
- 基于深度学习的基于视觉的机器人导航
SEU-WYL
深度学习dnn深度学习机器人人工智能
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。这种方法使机器人能够像人类一样使用视觉信息感知环境、规划路径,并避开障碍物。与传统的导航方法相比,深度学习模型能够在动态环境中表现出更强的适应能力和鲁棒性。1.视觉导航的基本概念视觉导航是指通过处理机器人的摄像头等视觉传感器采集到的图像数据,构建环境模型,进而进行路径
- 图像边缘检测与轮廓提取详解及python实现
闲人编程
pythonpython计算机视觉开发语言RobertsPrewittCanny边缘检测
目录图像边缘检测与轮廓提取详解第一部分:图像边缘检测与轮廓提取概述1.1什么是边缘检测和轮廓提取?1.2边缘检测与轮廓提取的应用领域1.3为什么需要边缘检测和轮廓提取?第二部分:常见的图像边缘检测算法2.1Sobel算子2.2Canny边缘检测2.3拉普拉斯算子(LaplacianofGaussian,LoG)2.4Prewitt算子2.5Roberts交叉算子第三部分:图像轮廓提取的基本方法3.
- 使用 Python 实现无人机实时路径规划的 MPC 算法
闲人编程
pythonpython无人机算法MPC路径优化
目录使用Python实现无人机实时路径规划的MPC算法引言1.模型预测控制(MPC)概述1.1定义1.2MPC的基本原理1.3代价函数1.4MPC的特点2.Python中的MPC算法实现2.1安装必要的库2.2定义类2.2.1无人机模型类2.2.2MPC控制器类2.3示例程序3.MPC算法的优缺点3.1优点3.2缺点4.改进方向5.应用场景结论使用Python实现无人机实时路径规划的MPC算法引言
- 第17篇:七段数码管译码器
Terasic友晶科技
数字逻辑(DE2-115)fpga开发
Q:之前我们设计实现的逻辑电路最终输出结果都是通过LED显示,本篇我们将实现用七段数码管来显示输出结果。A:七段数码管显示基本原理:DE2-115开发板有8个共阳极数码管,即低电平逻辑值0点亮数码管段、逻辑值1来使数码管段熄灭。七段数码管译码器有4个输入端口,7个输出端口连接数码管的七个段。4个输入共有16种不同状态组合,对应十六进制数0~F。数码管显示比如0时,第6段是熄灭状态,给它的是高电平逻
- 第14篇:2线-4线译码器
Terasic友晶科技
数字逻辑(DE2-115)fpga开发
Q:有编码器那对应的就会有译码器,本期我们来设计实现2线-4线二进制译码器。A:基本原理:译码器是编码器的逆过程,其功能是将具有特定含义的二进制码转换为对应的输出信号。2线-4线二进制译码器有2个输入共4种不同的组合状态,因此可以解码出4组输出信号。这里我们还设置使能信号,只有使能信号为“1”时译码器才会工作,否则输出全为1。用Verilog过程结构always表示部分代码:使用DE2-115开发
- VARGPT:将视觉理解与生成统一在一个模型中,北大推出支持混合模态输入与输出的多模态统一模型
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读模型简介:VARGPT是北京大学推出的多模态大语言模型,专注于视觉理解和生成任务。主要功能:支持混合模态输入输出、高效视觉生成和广泛的多模态任务。技术原理:基于自回归框架,采用三阶段训练策略,
- 期货市场程序化交易发展迅猛,未来真能取代主观交易吗
股票程序化交易接口
量化交易股票API接口Python股票量化交易期货市场程序化交易主观交易发展迅猛股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>程序化交易的崛起程序化交易的概念与原理程序化交易是一种利用计算机程序来执行交易策略的交易方式。它基于预先设定的算法和规则,对市场数据进行分析,如价格、成交量等。一旦满足设定的条件,就自动发出交易指令。这种交易方式能够快速、准确地处理大
- 最近使用的最少使用缓存(LRU Cache)算法
StVariable
缓存算法
LRU缓存算法是一种常用的缓存替换策略,它基于最近最少使用的原则,将最近最少使用的数据项从缓存中淘汰。本文将详细介绍LRU缓存算法的原理和应用,并提供相应的源代码实现。LRU缓存算法原理LRU缓存算法的核心思想是基于数据项的访问历史来决定哪些数据项是最近最少使用的。每当访问一个数据项时,该数据项被标记为最近使用的,并移动到缓存的首部(或者说是最新位置)。当缓存已满并需要淘汰数据项时,最近最少使用的
- 基于face_recognition的人脸识别
#北极星star
人脸识别人工智能opencv计算机视觉
目录一.简要介绍二.相关函数三.算法流程四.代码实现五.效果展示一.简要介绍face_recognition是一个基于Python的开源人脸识别库,它使用dlib库中的深度学习模型来实现人脸识别功能。这个库以其简洁的API和高效的性能而广受欢迎,成为许多开发者和研究者的首选工具。face_recognition库的主要功能包括:1.人脸检测:识别图像中所有的人脸并返回其位置信息。2.人脸编码:将检
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号