题意
传送门
一个无限长数轴,初始数轴上每个坐标上的数都是\(0\),
- 共\(n\)个操作,每个操作将数轴某一位置上的数加\(c\),
- \(m\)个询问,询问区间\([ l , r ]\)上所有数的和
数据范围
\(\begin{array}{l}-10^{9} \leq x \leq 10^{9} \\ 1 \leq n, m \leq 10^{5} \\ -10^{9} \leq l \leq r \leq 10^{9} \\ -10000 \leq c \leq 10000\end{array}\)
题解
坐标的范围是所有涉及到的点个数的\(10^{3}\)倍左右,只需要对涉及到的坐标按序离散化后操作即可
离散化后进行对应的操作通过二分找到离散化后的坐标,所以时间复杂度为\(O(N·logN)\)
Code
#include
using namespace std;
#define rep(i,a,n) for(int i=a;i vi;
typedef pairpii;
vi alls;
vectoradd,query;
int find_idx(int x){
int l=0,r=alls.size()-1;
while(l>1;
if(alls[mid] >=x) r=mid;
else l=mid+1;
}
return r+1;
}
int main(){
scanf("%d%d",&n,&m);
rep(i,0,n){
int x,c;
scanf("%d%d",&x,&c);
alls.pb(x);
add.pb({x,c});
}
rep(i,0,m){
int l,r;
scanf("%d%d",&l,&r);
query.pb({l,r});
alls.pb(l),alls.pb(r);
}
sort(alls.begin(),alls.end());
unique(alls.begin(),alls.end());
for(auto it:add){
int idx=find_idx(it.fi);
a[idx]+=it.se;
}
rep(i,1,alls.size()+1) sum[i]=sum[i-1]+a[i];
for(auto it:query){
int l=find_idx(it.fi),r=find_idx(it.se);
printf("%d\n",sum[r]-sum[l-1]);
}
return 0;
}