虹软人脸识别 - 人脸特征数据的存取

虹软人脸识别 - 人脸特征数据的存取

文章目录

  • 虹软人脸识别 - 人脸特征数据的存取
    • 一、简介
    • 二、数据库应用
      • 1. 连接数据库
      • 2. 建表
      • 3. 注册人脸并保存其特征值到数据库
      • 4. 获取人脸特征数据库进行人脸识别
    • 三、工程配置
      • 1. 编译前准备
      • 2. 依赖说明
    • 四、功能界面展示
      • 1. 主界面预览
      • 2. 注册人脸
      • 3. 识别人脸

一、简介

人脸识别在社会中应用越来越多,提供人脸识别的 API 的公司也很多,如百度、商汤、Face++、虹软、微软等。在简单了解了这些不同企业提供的产品后,发现只有虹软是提供免费离线 SDK 的。使用在线 API,因为网络延迟实时性跟不上。刚开始用的时候还是 2.0 版本,现在已经 3.0 了,实测效果确实不错。在 3.0 后还可以在视频中追踪人脸,避免后重复识别提高了性能。

在网上关于 ArcSoft 的人脸识别 SDK — ArcFace 的开发教程已经很多了,而且 SDK 自带的官方文档也非常简单易懂,就不再重复介绍了。本文的主要内容是怎么使用
SDK 并结合数据库(可选 SQLite 和 MySQL)来保存人脸特征数据以及怎么使用这些特征,中间还包含了和人脸特征相关的部分 API 的使用。

在本文末提供了使用 ArcFace、Qt 编写的示例代码。

二、数据库应用

将数据库的操作封装为一个类,下面介绍封装类的具体实现。

1. 连接数据库

使用封装好的数据库对象连接数据库,具体的细节如下:

  • 使用 SQLite

连接数据库的接口(构造函数)


DatabaseSQLite(QString const & database_name);

实现


database_ = QSqlDatabase::addDatabase("QSQLITE", database_name);

database_.setDatabaseName(database_name);

database_.open();
  • 使用 MySQL

连接数据库的接口(构造函数)


DatabaseMySQL::DatabaseMySQL(

    QString const & host_name,

    QString const & user_name,

    QString const & password,

    QString const & database_name

);

实现


database_ = QSqlDatabase::addDatabase("QMYSQL", database_name);

database_.setHostName(host_name);

database_.setUserName(user_name);

database_.setPassword(password);

database_.setDatabaseName(database_name);

database_.open();

2. 建表

在连接上数据库后,如果数据库中不存在相应的表结构,需要立即创建相应的表来存放数据。

  • 使用 SQLite

建表


auto query = QSqlQuery(database_);

query.exec(

    "CREATE TABLE IF NOT EXISTS
features("           "\n"

    "   
id      INTEGER PRIMARY KEY
AUTOINCREMENT," "\n"

    "    name   
VARCHAR(32),"                      
"\n"

    "    feature BLOB"                               "\n"

    ");"

);
  • 使用 MySQL

建表


auto query = QSqlQuery(database_);

query.exec(

    "CREATE TABLE IF NOT EXISTS
features("            "\n"

    "    id     
INTEGER PRIMARY KEY AUTO_INCREMENT," "\n"

    "    name   
VARCHAR(32),"                       
"\n"

    "    feature BLOB"                                "\n"

    ");"

);

SQLite 和 MySQL 的建表操作区别如下:

SQLite MySQL
AUTOINCREMENT AUTO_INCREMENT

存放特征值的字段 feature 使用 BLOB,因为 ArcFace SDK 提取的特征是一串定长的二进制数据(目前 3.0 为 1032 字节)。
这里的表结构很简单,实际中可以根据业务需要扩展表结构。

3. 注册人脸并保存其特征值到数据库

虹软人脸识别 - 人脸特征数据的存取_第1张图片

将人名(文件名)和人脸特征值(通过 ArcFace SDK 获取)绑定加入到数据库和内存缓存。

获取人脸特征值的相关代码


// 读取本地文件并转为 B8G8R8 的格式

QImage image = load(filename);

 

// 将图片数据转换为 ArcFace SDK 图像的接口(这里用的使新版的接口)

auto asf_image = ASVLOFFSCREEN();

asf_image.u32PixelArrayFormat = ASVL_PAF_RGB24_B8G8R8;

asf_image.i32Width = image.width();

asf_image.i32Height = image.height();

asf_image.pi32Pitch[0] = 3 * image.width();

asf_image.ppu8Plane[0] = const_cast<uint8_t *>(image.bits());

 

auto faces_info = ASF_MultiFaceInfo();

 

// 检测人脸,检测到的人脸位置信息存放在 faces_info

ASFDetectFacesEx(handle, &asf_image, &faces_info);

 

if (faces_info.faceNum == 0){ return; }

 

// 仅处理第一个人脸(因为文件名只有一个,无法和多个人脸对应)

auto face_info = ASF_SingleFaceInfo();

face_info.faceRect = faces_info.faceRect[0];

face_info.faceOrient = faces_info.faceOrient[0];

 

auto asf_feature = ASF_FaceFeature();

 

// 提取特征到 asf_feature

ASFFaceFeatureExtractEx(handle, &asf_image, &face_info,
&asf_feature);

 

// 如果提取处理的特征值数据还在 ArcFace SDK 中,且下次再提取会被覆盖,所以对特征值数据进行复制

auto feature =
std::vector<uint8_t>(static_cast<size_t>(asf_feat.featureSize));

std::copy_n(asf_feat.feature, asf_feat.featureSize, feature.begin());

 

// 添加到本地数据库和内存缓存,具体细节在下面详细说明

database_->add(QFileInfo(filename).baseName(), std::move(feature));

保存单人脸特征到数据库的接口


auto add(

    QString name,

    Feature feature

) -> bool;

实现

这里 SQLite 和 MySQL 的操作是一样的。

先将数据插入到数据库:


auto query = QSqlQuery(database_);

query.prepare(

    "INSERT INTO features(name,
feature)VALUES(:name, :feature);"

);

 

auto feature_bytes = QByteArray(

    reinterpret_cast<char
*>(&feature[0]),

   
static_cast<int>(feature.size())

);

 

query.bindValue(":name", name);

query.bindValue(":feature", feature_bytes);

query.exec();

在实际开发过程中,可能会同时插入多条人脸特征,这时使用事务可以提升性能。

在数据库插入成功后再把数据复制到内存中数据库数据的副本中,保证内存中人脸特征数据库和数据库中的一致:


features_.emplace_back(std::move(feature), std::move(name));

4. 获取人脸特征数据库进行人脸识别

该模块 SQLite 和 MySQL 的操作是一样的。

虹软人脸识别 - 人脸特征数据的存取_第2张图片

在程序启动时,将数据库中的人脸特征预加载到缓存中。

加载数据到缓存的实现


auto query = QSqlQuery(database_);

query.exec(

    "SELECT name, feature FROM
features"

);

while (query.next())

{

    auto name = query.value(QStringLiteral(u"name")).toString();

    auto feature =
query.value(QStringLiteral(u"feature")).toByteArray();

    features_.emplace_back(

        Feature(feature.cbegin(),
feature.cend()),

        std::move(name)

    );

}

上面代码中 features_ 的类型是
std::vector, QString>>,可根据具体的需求调整。

人脸比对的实现


// 读取本地文件并转为 B8G8R8 的格式

QImage image = load(filename);

 

// 将 QImage 图像数据转换为 ASVLOFFSCREEN(3.0 的新接口)

auto asf_image = ASVLOFFSCREEN();

asf_image.u32PixelArrayFormat = ASVL_PAF_RGB24_B8G8R8;

asf_image.i32Width = image.width();

asf_image.i32Height = image.height();

asf_image.pi32Pitch[0] = 3 * image.width();

asf_image.ppu8Plane[0] = const_cast<uint8_t *>(image.bits());

 

auto faces_info = ASF_MultiFaceInfo();

 

// 检测人脸,检测到的人脸信息存放在 faces_info

ASFDetectFacesEx(handle, &asf_image, &faces_info);

 

if (faces_info.faceNum == 0){ return; }

 

// 相似度最高且高于阈值就认为是同一个人

constexpr auto threshold = 0.8f;

 

for (auto i = 0; i != faces_info.faceNum; ++i)

{

   
auto face_info = ASF_SingleFaceInfo();

    face_info.faceRect =
faces_info.faceRect[i];

    face_info.faceOrient =
faces_info.faceOrient[i];

 

    auto asf_feat =
ASF_FaceFeature();

    ASFFaceFeatureExtractEx(handle,
&asf_image, &face_info, &asf_feat);

 

    auto name =
QString("?");

    auto max_similarity = 0.0f;

 

    // database_->features() 得到的是人脸特征数据库在内存中的缓存

    // 类型是
std::vector<std::pair<std::vector<uint8_t>, QString>>

    for (auto const & feat_name:
database_->features())

    {

        auto asf_feat2 = ASF_FaceFeature();

        asf_feat2.feature =
feat_name.first.data();

        asf_feat2.featureSize =
static_cast<int>(feat_name.first.size());

 

        auto similarity = 0.0f;

       
ASFFaceFeatureCompare(face_engine_, &asf_feat, &asf_feat2,
&similarity);

 

        if (threshold <=
similarity && max_similarity < similarity)

        {

            name = feat_name.second;

            max_similarity =
similarity;

        }

    }

 

    // 这里有个绘制人脸框的操作,因为与识别逻辑无关所以没有给出代码

}

三、工程配置

1. 编译前准备

  • profile.ini 文件中填好在官网下载的 ArcFace SDK 的 APP_IDSDK_KEY

注意,因为使用的是相对路径,使用不同的启动方式文件放置的路径不同:
如果使用 Visual Studio,那么这个文件应该放到项目根目录下;
如果使用 Qt Creator,那个这个文件应该放到构建的二进制目录的父目录下(即 build-
开头的目录下);
如果是直接双击运行,那么这个文件应该放到程序所在目录的同级目录下。

2. 依赖说明

  • ArcFace SDK: 3.0。

  • Qt: 5.12.0。

    • 不同的版本 Qt 可能没有内置 MySQL 的动态库。

如果需要查看数据表,可以使用 Sqlite Expert。

示例代码下载路径(https://github.com/tz-byte/arcface-with-database)

四、功能界面展示

1. 主界面预览

虹软人脸识别 - 人脸特征数据的存取_第3张图片

2. 注册人脸

点击注册按钮,选取一张人脸图片,仅取第一张人脸进行特征提取,将文件名和人脸特征绑定存入数据库。

具体使用的是 SQLite 还是 MySQL 数据库,请在 widget.cpp 文件中搜索 database_.reset(new,默认是 SQLite。

3. 识别人脸

点击识别按钮,选取一张人脸的图片。

效果图:

虹软人脸识别 - 人脸特征数据的存取_第4张图片

绿色框表示识别成功,识别出来的结果在框内左下角。
红色框表示识别失败,可能是没有注册,或人脸相似度低于阈值。

你可能感兴趣的:(虹软人脸识别 - 人脸特征数据的存取)