题意:
n * m的矩阵,为0表示可以走,1不可以走。规定每走一步只能向下、向左、向右走。现给定两种操作:
一.1 x y表示翻转坐标(x,y)的0、1。
二.2 x y表示从(1,x)走到(n,y)有几种走法
思路:
假设\(dp[i][j]\)表示从下一层能到达(i,j)点的路径数,那么显然到达(i,j)的路径数为\(dp[i + 1][j]\)。
我们能很显然的得到转移方程\(dp[i][j] = \sum_{k = l}^r dp[i - 1][k]\),其中l~r为(i,j)下方能直接走到(i,j)的连续区间。
我们可以直接用矩阵维护这个转移方程:
\[ \left( \begin{matrix} dp[i][1] & dp[i][2] & dp[i][3] & \cdots & dp[i][m] \end{matrix} \right) * A_i= \left( \begin{matrix} dp[i + 1][1] & dp[i + 1][2] & dp[i + 1][3] & \cdots & dp[i + 1][m] \end{matrix} \right) \]
然后用线段树维护矩阵乘积即可
从(1,x)走到(n,y)只需把x位置置为1,然后乘以\(\prod_{i = 1}^n A_i\)
代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 50000 + 5;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
int n, m, q;
int mp[maxn][12];
char s[12];
struct Mat{
ll s[12][12];
void init_zero(){
for(int i = 0; i < 12; i++)
for(int j = 0; j < 12; j++)
s[i][j] = 0;
}
};
Mat pmul(Mat a, Mat b, int len){
Mat c;
c.init_zero();
for(int i = 1; i <= len; i++){
for(int j = 1; j <= len; j++){
for(int k = 1; k <= len; k++){
c.s[i][j] = (c.s[i][j] + a.s[i][k] * b.s[k][j]) % MOD;
}
}
}
return c;
}
Mat mul[maxn << 2], a[maxn];
void pushup(int rt){
mul[rt] = pmul(mul[rt << 1], mul[rt << 1 | 1], m);
}
void build(int l, int r, int rt){
if(l == r){
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
mul[rt].s[i][j] = a[l].s[i][j];
return;
}
int m = (l + r) >> 1;
build(l, m, rt << 1);
build(m + 1, r, rt << 1 | 1);
pushup(rt);
}
void update(int pos, int l, int r, Mat aa, int rt){
if(l == r){
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
mul[rt].s[i][j] = aa.s[i][j];
return;
}
int m = (l + r) >> 1;
if(pos <= m)
update(pos, l, m, aa, rt << 1);
else
update(pos, m + 1, r, aa, rt << 1 | 1);
pushup(rt);
}
int main(){
scanf("%d%d%d", &n, &m, &q);
for(int i = 1; i <= n; i++){
scanf("%s", s + 1);
for(int j = 1; j <= m; j++){
mp[i][j] = s[j] - '0';
}
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
int base;
base = 1;
for(int k = j; k >= 1; k--){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
base = 1;
for(int k = j; k <= m; k++){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
}
}
// for(int k = 1; k <= n; k++){
// for(int i = 1; i <= m; i++){
// for(int j = 1; j <= m; j++){
// printf("%d ", a[k].s[i][j]);
// }
// puts("");
// }
// puts("*****");
// }
build(1, n, 1);
while(q--){
int ques, i, j;
scanf("%d", &ques);
scanf("%d%d", &i, &j);
if(ques == 1){
mp[i][j] = !mp[i][j];
for(int j = 1; j <= m; j++){
int base;
base = 1;
for(int k = j; k >= 1; k--){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
base = 1;
for(int k = j; k <= m; k++){
if(mp[i][k] == 1) base = 0;
a[i].s[k][j] = base;
}
}
update(i, 1, n, a[i], 1);
}
else{
Mat ret;
ret.init_zero();
ret.s[1][i] = 1;
ret = pmul(ret, mul[1], m);
printf("%lld\n", ret.s[1][j]);
}
}
return 0;
}
/*
2 6 1
0 0 0 1 0 0
1 0 1 0 1 0
*/