tf.reshape(tensor,shape, name=None)
函数的作用是将tensor变换为参数shape的形式。
其中shape为一个列表形式,特殊的一点是列表中可以存在-1。-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算,但列表中只能存在一个-1。(当然如果存在多个-1,就是一个存在多解的方程了)
好了我想说的重点还有一个就是根据shape如何变换矩阵。其实简单的想就是,
reshape(t, shape) => reshape(t, [-1]) =>reshape(t, shape)
首先将矩阵t变为一维矩阵,然后再对矩阵的形式更改就可以了。
官方的例子:
# tensor
't'is [
1,
2,
3,
4,
5,
6,
7,
8,
9]
# tensor
't'has shape [
9]
reshape(t, [
3,
3]) ==>
[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
# tensor
't'is
[[[1, 1], [2, 2]],
#
[[3, 3], [4, 4]]]
# tensor
't'has shape [
2,
2,
2]
reshape(t, [
2,
4]) ==>
[[1, 1, 2, 2],
[3, 3, 4, 4]]
# tensor
't'is
[[[1, 1, 1],
# [2, 2, 2]],
#
[[3, 3, 3],
# [4, 4, 4]],
#
[[5, 5, 5],
# [6, 6, 6]]]
# tensor
't'has shape [
3,
2,
3]
# pass
'[-1]'to flatten
't'
reshape(t, [-
1]) ==> [
1,
1,
1,
2,
2,
2,
3,
3,
3,
4,
4,
4,
5,
5,
5,
6,
6,
6]
# -
1can also be used to infer the shape
# -
1is inferred to be
9:
reshape(t, [
2, -
1]) ==>
[[1, 1, 1, 2, 2, 2, 3, 3, 3],
[4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -
1is inferred to be
2:
reshape(t, [-
1,
9]) ==>
[[1, 1, 1, 2, 2, 2, 3, 3, 3],
[4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -
1is inferred to be
3:
reshape(t, [
2, -
1,
3]) ==>
[[[1, 1, 1],
[2, 2, 2],
[3, 3, 3]],
[[4, 4, 4],
[5, 5, 5],
[6, 6, 6]]]
# tensor
't'is [
7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==>
7