写在前面:圣诞刚过,弥留者节日气息的大家是否还在继续学习呐~在匆忙之际也不忘给自己找几首好听的歌曲放松一下,缠绕着音乐一起来看看关于2019年流行音乐趋势是如何用Python分析的吧!
昨天下午没事儿,随便听了下音乐,结果搜到了一份数据比较好玩,所以拿了来做个数据分享案例。
这份数据是由国外比较火的音乐软件spotify提供的,很有代表意义。
不过涉及到的指标都比较专业,我不是太懂,只能根据自己的理解去做分析,有懂音乐的朋友可以提出专业的看法。
这次的数据分析工具是Python,当然如果你Python不是很熟,用tableau也是可以的,做出的图还会更好看。
一、数据准备
1、导入数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar,WordCloud,Pie,Line
%matplotlib inline
%config InlineBackend.figure_format = ‘svg’
df=pd.read_excel(r’C:\Users\Administrator\Desktop\top50.xlsx’)
df.head()
这些代码都是不需要思考的,只要打开Python做数据分析,你首先就写好,或者直接复制就行,我都是把常用代码保存好,要用的时候就调出来用,这样省时间。
列的名称都是英语,我借助了百度做了下翻译:
Track.Name-曲目;
Artist.Name-歌手;
Genre - 类型
Beats Per Minute (BPM) - 每分钟节拍,也就是节奏.
Energy - 能量 - 分数越高,代表能量就越大;
Danceability - 舞蹈性-分数越高,代表你越容易因歌而舞;
Loudness (dB) - 分贝-值越大,说明歌曲越响亮,反之则低沉;
Liveness -现场性-值越大,歌曲越有可能是现场录音的;
Valence - 情绪-值越大,情绪越激昂,反之越消沉;
lentgh-时长;
Acousticness -音质;.
Speechiness -语言-值越大,说明口语化程度越高;
Popularity -火热程度。
2、数据列的名称更改
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar,WordCloud,Pie,Line
%matplotlib inline
%config InlineBackend.figure_format = ‘svg’
df=pd.read_excel(r’C:\Users\Administrator\Desktop\top50.xlsx’)
df=df.rename(columns={‘Track.Name’:‘曲名’, ‘Artist.Name’:‘歌手’, ‘Genre’:‘类型’, ‘Beats.Per.Minute’:‘节奏’, ‘Energy’:‘能量’,
‘Danceability’:‘舞蹈性’, ‘Loudness…dB…’:‘分贝’,‘Liveness’:‘现场感’, ‘Length.’:‘时长’,‘Speechiness’:‘语言’, ‘Popularity’:‘火热程度’})
df.head(10)
看英语的总是不习惯,所以我们可以把英语的列名改为中文。
二、数据分析
1、2019全球最流行的音乐类型排行
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar,WordCloud,Pie,Line
%matplotlib inline
%config InlineBackend.figure_format = ‘svg’
df=pd.read_excel(r’C:\Users\Administrator\Desktop\top50.xlsx’)
df=df.rename(columns={‘Track.Name’:‘曲名’, ‘Artist.Name’:‘歌手’, ‘Genre’:‘类型’, ‘Beats.Per.Minute’:‘音调’, ‘Energy’:‘能量’,
‘Danceability’:‘舞蹈性’, ‘Loudness…dB…’:‘分贝’,‘Liveness’:‘现场感’, ‘Length.’:‘时长’,‘Speechiness’:‘语言’, ‘Popularity’:‘火热程度’})
df=df.groupby(‘类型’)[‘曲名’].count().reset_index()
df=df.sort_values(by=‘曲名’,ascending=False).reset_index()
cloud=WordCloud(title=‘2019最流行的音乐类型’,width=800,height=420)
cloud.add(name=‘音乐类型’,attr=df[‘类型’],value=df[‘曲名’],word_size_range=(12,60))
cloud.render(‘2019全球最流行的音乐类型.html’)
cloud
从词云图可以看到,2019年全球最火的还是流行音乐(pop&dance pop)。鉴于其他类型的音乐我都不认识,所以下面的分析,我会直接对pop&dance pop作为主要对象,把他们归为一类。
2、2019年全球流行音乐排行
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar,WordCloud,Pie,Line
%matplotlib inline
%config InlineBackend.figure_format = ‘svg’
df=pd.read_excel(r’C:\Users\Administrator\Desktop\top50.xlsx’)
df=df.rename(columns={‘Track.Name’:‘曲名’, ‘Artist.Name’:‘歌手’, ‘Genre’:‘类型’, ‘Beats.Per.Minute’:‘音调’, ‘Energy’:‘能量’,
‘Danceability’:‘舞蹈性’, ‘Loudness…dB…’:‘分贝’,‘Liveness’:‘现场感’, ‘Length.’:‘时长’,‘Speechiness’:‘语言’, ‘Popularity’:‘火热程度’})
df=df.replace(‘dance pop’,‘pop’)
df=df[df[‘类型’]==‘pop’].reset_index().drop(‘index’,axis=1)
df
通过上述代码,我已经把dance pop的类型全部换成pop。
#接上面的代码
df=df.replace(‘dance pop’,‘pop’)
df=df[df[‘类型’]==‘pop’].reset_index().drop(‘index’,axis=1)
df.pivot_table(df,index=‘曲名’).sort_values(by=‘火热程度’,ascending=False).reset_index()
这是全球最流行的15首流行歌曲。
结合前面的图我们可以知道:这些流行歌曲的口语化程度低,歌词普遍比较优美,有意境;同时时长恰当,多在3分钟左右…
3、根据流行程度对歌曲进行分类颁奖
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar,WordCloud,Pie,Line
%matplotlib inline
%config InlineBackend.figure_format = ‘svg’
df=pd.read_excel(r’C:\Users\Administrator\Desktop\top50.xlsx’)
df=df.rename(columns={‘Track.Name’:‘曲名’, ‘Artist.Name’:‘歌手’, ‘Genre’:‘类型’, ‘Beats.Per.Minute’:‘音调’, ‘Energy’:‘能量’,
‘Danceability’:‘舞蹈性’, ‘Loudness…dB…’:‘分贝’,‘Liveness’:‘现场感’, ‘Length.’:‘时长’,‘Speechiness’:‘语言’, ‘Popularity’:‘火热程度’})
df=df.replace(‘dance pop’,‘pop’)
df=df[df[‘类型’]==‘pop’].reset_index().drop(‘index’,axis=1)
df=df.pivot_table(‘火热程度’,index=‘曲名’).sort_values(by=‘火热程度’,ascending=False).reset_index()
def grade(火热程度):
if(火热程度>=90):
return ‘年度最热’
if(火热程度>=85):
return ‘年度火热’
else:
return ‘年度流行’
df[‘授予荣誉’] = df.apply(lambda x :grade(x[‘火热程度’]), axis=1)
df
我们知道,很多媒体都喜欢搞排行榜,而且喜欢给歌曲颁奖,这些颁奖一般会根据几个标准进行打分,算出综合排名。不过这个比较复杂,这里只根据流行程度颁奖,大于90分的就是年度最热;85-89的是年度火热;84以下的就是年度流行。这个实现代码很简单,做出分类,再给数据加一列,命名为“授予荣誉”即可。
#接上面的代码
plt.rcParams[‘font.sans-serif’]=[‘SimHei’]
plt.figure(figsize=(8,4))
sns.countplot(x=“授予荣誉”,data=df, order=[‘年度最热’,‘年度火热’,‘年度流行’],palette=“muted”)
plt.title(‘2019年全球流行音乐荣誉’,loc=‘left’,size=15)
plt.xlabel(‘授予荣誉’,size=15)
plt.ylabel(‘数量’,size=15)
plt.grid(False)
sns.despine(left=False )
4、2019全球最火流行歌手排行榜
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar,WordCloud,Pie,Line
%matplotlib inline
%config InlineBackend.figure_format = ‘svg’
df=pd.read_excel(r’C:\Users\Administrator\Desktop\top50.xlsx’)
df=df.rename(columns={‘Track.Name’:‘曲名’, ‘Artist.Name’:‘歌手’, ‘Genre’:‘类型’, ‘Beats.Per.Minute’:‘音调’, ‘Energy’:‘能量’,
‘Danceability’:‘舞蹈性’, ‘Loudness…dB…’:‘分贝’,‘Liveness’:‘现场感’, ‘Length.’:‘时长’,‘Speechiness’:‘语言’, ‘Popularity’:‘火热程度’})
df=df.replace(‘dance pop’,‘pop’)
df=df[df[‘类型’]==‘pop’].reset_index().drop(‘index’,axis=1)
df=df.pivot_table(‘火热程度’,index=‘歌手’,aggfunc=‘count’).sort_values(by=‘火热程度’,ascending=False).reset_index()
df=df.rename(columns={‘火热程度’:‘上榜次数’})
df
这是全球最火的十大流行音乐歌手的排行。当然下面的图更直观:
#接上面的代码
plt.rcParams[‘font.sans-serif’]=[‘SimHei’]
x=df[‘歌手’]
y=df[‘上榜次数’]
plt.figure(figsize=(12,4))
plt.bar(x,y,width=0.5,align=‘center’)
plt.title(‘2019全球最火流行歌手排行榜’,loc=‘left’,size=15)
for a,b in zip(x,y):
plt.text(a,b,b,ha=‘center’,va=‘bottom’,fontsize=12)#显示额度标签
plt.xlabel(‘歌手’,size=15)
plt.ylabel(‘上榜次数’,size=15)
plt.xticks(x,size=12,rotation=30)
plt.yticks(size=15,)
plt.grid(False)
sns.despine(left=False )
plt.show()
从上面的分析可以看到,Ed Sheeran这个人最厉害,15首最流行的歌,他一个人唱了四首,于是我百度了一下,想知道是何方神圣。最后发现就是这个人:
Beautiful People (feat. Khalid)
百度上说,这个人出生于1991年,今年刚结婚,英国的,2012年21岁的时候就在在第32届全英音乐奖中荣获英国最佳男艺人、英国最具突破艺人;2018年,获得第60届格莱美奖最佳流行歌手、最佳流行专辑奖。2019福布斯100名人榜排名第5位。
然而这么有名的人我竟然不认识,我好孤陋寡闻。
三、写在后面
数据分析其实是个很好玩的东西,平时的训练除了可以熟悉技能,其实还可以知道很多其他东西。
因为你每次做个案例,就相当于对某个领域做了一次了解,有时候还可以刷新自己的认知。
然后在做数据案例的时候,建议大家可以多找些自己感兴趣的数据源,悄悄告诉你,GitHub上有很多。这个网站真的很神奇,不仅有数据源,还可以案例分析,还有源代码,有些你只要复制下来就可以直接用,非常方便。
最后,小编想说:我是一名python开发工程师,整理了一套最新的python系统学习教程,想要这些资料的可以关注私信小编“01”即可,希望能对你有所帮助。