sklearn.covariance(协方差)模块结构及用法

许多统计学问题需要做总体协方差矩阵评估,可以看作是数据集散点图的评估。

大多数情况下,这样一个评估会在与一个对估计质量有很大影响(大小、结构、同质性)的样本上完成。

sklearn.covariance包为在各种条件下精确评估总体协方差矩阵提供了有效工具。

我们假设观察值是独立且同分布的。

模块提供了以下四种常见估计方法:

  1. Empirical covariance经验协方差 官方文档

class sklearn.covariance.EmpiricalCovariance(store_precision=True, assume_centered=False)
  1. Shrunk Covariance缩减协方差

  2. Sparse inverse covariance稀疏逆协方差

  3. Robust Covariance Estimation 鲁棒协方差估计

  • 模块内各种类及函数

covariance.EmpiricalCovariance([…]) Maximum likelihood covariance estimator
covariance.EllipticEnvelope([…]) An object for detecting outliers in a Gaussian distributed dataset.
covariance.GraphicalLasso([alpha, mode, …]) Sparse inverse covariance estimation with an l1-penalized estimator.
covariance.GraphicalLassoCV([alphas, …]) Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
covariance.LedoitWolf([store_precision, …]) LedoitWolf Estimator
covariance.MinCovDet([store_precision, …]) Minimum Covariance Determinant (MCD): robust estimator of covariance.
covariance.OAS([store_precision, …]) Oracle Approximating Shrinkage Estimator
covariance.ShrunkCovariance([…]) Covariance estimator with shrinkage
covariance.empirical_covariance(X[, …]) Computes the Maximum likelihood covariance estimator
covariance.graphical_lasso(emp_cov, alpha[, …]) l1-penalized covariance estimator
covariance.ledoit_wolf(X[, assume_centered, …]) Estimates the shrunk Ledoit-Wolf covariance matrix.
covariance.oas(X[, assume_centered]) Estimate covariance with the Oracle Approximating Shrinkage algorithm.
covariance.shrunk_covariance(emp_cov[, …]) Calculates a covariance matrix shrunk on the diagonal
  • Reference

  1. Covariance estimation
  2. sklearn中文手册
  3. 协方差详解角度:历史、数学、物理意义

你可能感兴趣的:(小白学机器学习)