spark streaming程序的优雅关闭

spark streaming程序的优雅关闭_第1张图片使用ssc.awaitTermination()来退出,程序只能在开始的终端处control + c来结束,不方便管理,ssc.awaitTermination(time: long)是指定工作时长也不方便, 所以使用自定义方法来替换掉: stopByMarkFile(ssc,hadoop_file), 代码如下

def stopByMarkFile(ssc:StreamingContext, hadoop_file:String):Unit= {
    val intervalMills = 1 * 1000 // 每隔1秒扫描一次消息是否存在
    var isStop = false
//  val hadoop_master = "hdfs://localhost:9000/stop"//判断消息文件是否存在,如果存在就
    while (!isStop) {
      isStop = ssc.awaitTerminationOrTimeout(intervalMills)
      if (!isStop && isExistsMarkFile(hadoop_file)) {
        println("1 秒后开始关闭sparstreaming程序.....")
        Thread.sleep(1000)
        ssc.stop(true, true)
        delHdfsFile(hadoop_file)
      } else {
        println("***********未检测到有停止信号*****************")
      }
    }

    def isExistsMarkFile(hdfs_file_path:String):Boolean={
      val conf = new Configuration()
      val path=new Path(hdfs_file_path)
      val fs =path.getFileSystem(conf)
      fs.exists(path)
    }
    def delHdfsFile(hdfs_file_path:String):Unit={
      val conf = new Configuration()
      val path=new Path(hdfs_file_path)
      val fs =path.getFileSystem(conf)
      if (fs.exists(path)) fs.delete(path,true)
    }
  }

测试程序如下:

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}

object nc2 {

  def main(args: Array[String]): Unit = {
    //spark配置
    if (args.length <1){
      println("需要1个参数: hadoop_file 标志程序退出的文件")
      System.exit(1)
    }

    val hadoop_file=args(0)//val hadoop_file="hdfs://192.168.226.128/stop";
    val conf = new SparkConf()
//    conf.setMaster("local[*]")
    conf.setAppName("测试spark-streaming的退出")
    conf.set("spark.streaming.stopGracefullyOnShutdown","true")//等待数据处理完后,才停止任务,以免数据丢失

    //流配置
    val ssc = new StreamingContext(conf,Seconds(1))
    val sc = ssc.sparkContext
    val ds = ssc.socketTextStream("127.0.0.1",8888,StorageLevel.MEMORY_ONLY)
    val ds2 = ds.map((_,1)).reduceByKey(_+_)
    ds2.print()

    //启动
    ssc.start()
    stopByMarkFile(ssc,hadoop_file)
  }

spark streaming程序的优雅关闭_第2张图片

你可能感兴趣的:(大数据hadoop-spark)