https://www.cnblogs.com/TangBiao/p/5856695.html
https://blog.csdn.net/dazhaoDai/article/details/81631195
https://www.cnblogs.com/hengzhou/p/9896535.html
为什么要进行算法分析?
如何衡量算法复杂度?
算法的运行时间与什么相关?
算法分析的种类:
例如,在一个长度为 n 的列表中顺序搜索指定的值,则
而实际中,我们一般仅考量算法在最坏情况下的运行情况,也就是对于规模为 n 的任何输入,算法的最长运行时间。这样做的理由是:
算法分析要保持大局观(Big Idea),其基本思路:
比如:T(n) = 73n3 + 29n3 + 8888 的趋势就相当于 T(n) = Θ(n3)。
渐近记号(Asymptotic Notation)通常有 O、 Θ 和 Ω 记号法。Θ 记号渐进地给出了一个函数的上界和下界,当只有渐近上界时使用 O 记号,当只有渐近下界时使用 Ω 记号。尽管技术上 Θ 记号较为准确,但通常仍然使用 O 记号表示。
使用 O 记号法(Big O Notation)表示最坏运行情况的上界。例如,
Notation | Intuition | Informal Definition |
f is bounded above by g asymptotically |
||
Two definitions : f is not dominated by g asymptotically Complexity theory: f is bounded below by g asymptotically |
||
f is bounded both above and below by g asymptotically |
例如:
相当于:
复杂度 | 标记符号 | 描述 |
常量(Constant) | O(1) |
操作的数量为常数,与输入的数据的规模无关。 n = 1,000,000 -> 1-2 operations |
对数(Logarithmic) | O(log2 n) |
操作的数量与输入数据的规模 n 的比例是 log2 (n)。 n = 1,000,000 -> 30 operations |
线性(Linear) | O(n) | 操作的数量与输入数据的规模 n 成正比。 n = 10,000 -> 5000 operations |
平方(Quadratic) | O(n2) | 操作的数量与输入数据的规模 n 的比例为二次平方。 n = 500 -> 250,000 operations |
立方(Cubic) | O(n3) | 操作的数量与输入数据的规模 n 的比例为三次方。 n = 200 -> 8,000,000 operations |
指数(Exponential) | O(2n) O(kn) O(n!) |
指数级的操作,快速的增长。 n = 20 -> 1048576 operations |
注1:快速的数学回忆,logab = y 其实就是 ay = b。所以,log24 = 2,因为 22 = 4。同样 log28 = 3,因为 23 = 8。我们说,log2n 的增长速度要慢于 n,因为当 n = 8 时,log2n = 3。
注2:通常将以 10 为底的对数叫做常用对数。为了简便,N 的常用对数 log10 N 简写做 lg N,例如 log10 5 记做 lg 5。
注3:通常将以无理数 e 为底的对数叫做自然对数。为了方便,N 的自然对数 loge N 简写做 ln N,例如 loge 3 记做 ln 3。
注4:在算法导论中,采用记号 lg n = log2 n ,也就是以 2 为底的对数。改变一个对数的底只是把对数的值改变了一个常数倍,所以当不在意这些常数因子时,我们将经常采用 "lg n"记号,就像使用 O 记号一样。计算机工作者常常认为对数的底取 2 最自然,因为很多算法和数据结构都涉及到对问题进行二分。
而通常时间复杂度与运行时间有一些常见的比例关系:
复杂度 | 10 | 20 | 50 | 100 | 1000 | 10000 | 100000 |
O(1) | <1s |
<1s |
<1s |
<1s |
<1s |
<1s |
<1s |
O(log2(n)) | <1s |
<1s |
<1s |
<1s |
<1s |
<1s |
<1s |
O(n) | <1s |
<1s |
<1s |
<1s |
<1s |
<1s |
<1s |
O(n*log2(n)) | <1s |
<1s |
<1s |
<1s |
<1s |
<1s |
<1s |
O(n2) | <1s |
<1s |
<1s |
<1s |
<1s |
2s |
3-4 min |
O(n3) | <1s |
<1s |
<1s |
<1s |
20s |
5 hours |
231 days |
O(2n) | <1s |
<1s |
260 days |
hangs |
hangs |
hangs |
hangs |
O(n!) | <1s |
hangs |
hangs |
hangs |
hangs |
hangs |
hangs |
O(nn) | 3-4 min |
hangs |
hangs |
hangs |
hangs |
hangs |
hangs |
计算代码块的渐进运行时间的方法有如下步骤:
示例代码(1):
1 decimal Factorial(int n)
2 {
3 if (n == 0)
4 return 1;
5 else
6 return n * Factorial(n - 1);
7 }
阶乘(factorial),给定规模 n,算法基本步骤执行的数量为 n,所以算法复杂度为 O(n)。
示例代码(2):
1 int FindMaxElement(int[] array)
2 {
3 int max = array[0];
4 for (int i = 0; i < array.Length; i++)
5 {
6 if (array[i] > max)
7 {
8 max = array[i];
9 }
10 }
11 return max;
12 }
这里,n 为数组 array 的大小,则最坏情况下需要比较 n 次以得到最大值,所以算法复杂度为 O(n)。
示例代码(3):
1 long FindInversions(int[] array)
2 {
3 long inversions = 0;
4 for (int i = 0; i < array.Length; i++)
5 for (int j = i + 1; j < array.Length; j++)
6 if (array[i] > array[j])
7 inversions++;
8 return inversions;
9 }
这里,n 为数组 array 的大小,则基本步骤的执行数量约为 n*(n-1)/2,所以算法复杂度为 O(n2)。
示例代码(4):
1 long SumMN(int n, int m)
2 {
3 long sum = 0;
4 for (int x = 0; x < n; x++)
5 for (int y = 0; y < m; y++)
6 sum += x * y;
7 return sum;
8 }
给定规模 n 和 m,则基本步骤的执行数量为 n*m,所以算法复杂度为 O(n2)。
示例代码(5):
1 decimal Sum3(int n)
2 {
3 decimal sum = 0;
4 for (int a = 0; a < n; a++)
5 for (int b = 0; b < n; b++)
6 for (int c = 0; c < n; c++)
7 sum += a * b * c;
8 return sum;
9 }
这里,给定规模 n,则基本步骤的执行数量约为 n*n*n ,所以算法复杂度为 O(n3)。
示例代码(6):
1 decimal Calculation(int n)
2 {
3 decimal result = 0;
4 for (int i = 0; i < (1 << n); i++)
5 result += i;
6 return result;
7 }
这里,给定规模 n,则基本步骤的执行数量为 2n,所以算法复杂度为 O(2n)。
示例代码(7):
斐波那契数列:
F() = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...
1 int Fibonacci(int n)
2 {
3 if (n <= 1)
4 return n;
5 else
6 return Fibonacci(n - 1) + Fibonacci(n - 2);
7 }
这里,给定规模 n,计算 Fib(n) 所需的时间为计算 Fib(n-1) 的时间和计算 Fib(n-2) 的时间的和。
T(n<=1) = O(1)
T(n) = T(n-1) + T(n-2) + O(1)
fib(5)
/ \
fib(4) fib(3)
/ \ / \
fib(3) fib(2) fib(2) fib(1)
/ \ / \ / \
通过使用递归树的结构描述可知算法复杂度为 O(2n)。
示例代码(8):
1 int Fibonacci(int n)
2 {
3 if (n <= 1)
4 return n;
5 else
6 {
7 int[] f = new int[n + 1];
8 f[0] = 0;
9 f[1] = 1;
10
11 for (int i = 2; i <= n; i++)
12 {
13 f[i] = f[i - 1] + f[i - 2];
14 }
15
16 return f[n];
17 }
18 }
同样是斐波那契数列,我们使用数组 f 来存储计算结果,这样算法复杂度优化为 O(n)。
示例代码(9):
1 int Fibonacci(int n)
2 {
3 if (n <= 1)
4 return n;
5 else
6 {
7 int iter1 = 0;
8 int iter2 = 1;
9 int f = 0;
10
11 for (int i = 2; i <= n; i++)
12 {
13 f = iter1 + iter2;
14 iter1 = iter2;
15 iter2 = f;
16 }
17
18 return f;
19 }
20 }
同样是斐波那契数列,由于实际只有前两个计算结果有用,我们可以使用中间变量来存储,这样就不用创建数组以节省空间。同样算法复杂度优化为 O(n)。
示例代码(10):
通过使用矩阵乘方的算法来优化斐波那契数列算法。
1 static int Fibonacci(int n)
2 {
3 if (n <= 1)
4 return n;
5
6 int[,] f = { { 1, 1 }, { 1, 0 } };
7 Power(f, n - 1);
8
9 return f[0, 0];
10 }
11
12 static void Power(int[,] f, int n)
13 {
14 if (n <= 1)
15 return;
16
17 int[,] m = { { 1, 1 }, { 1, 0 } };
18
19 Power(f, n / 2);
20 Multiply(f, f);
21
22 if (n % 2 != 0)
23 Multiply(f, m);
24 }
25
26 static void Multiply(int[,] f, int[,] m)
27 {
28 int x = f[0, 0] * m[0, 0] + f[0, 1] * m[1, 0];
29 int y = f[0, 0] * m[0, 1] + f[0, 1] * m[1, 1];
30 int z = f[1, 0] * m[0, 0] + f[1, 1] * m[1, 0];
31 int w = f[1, 0] * m[0, 1] + f[1, 1] * m[1, 1];
32
33 f[0, 0] = x;
34 f[0, 1] = y;
35 f[1, 0] = z;
36 f[1, 1] = w;
37 }
优化之后算法复杂度为O(log2n)。
示例代码(11):
在 C# 中更简洁的代码如下。
1 static double Fibonacci(int n)
2 {
3 double sqrt5 = Math.Sqrt(5);
4 double phi = (1 + sqrt5) / 2.0;
5 double fn = (Math.Pow(phi, n) - Math.Pow(1 - phi, n)) / sqrt5;
6 return fn;
7 }
示例代码(12):
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的有序数据。算法适用于少量数据的排序,时间复杂度为 O(n2)。
1 private static void InsertionSortInPlace(int[] unsorted)
2 {
3 for (int i = 1; i < unsorted.Length; i++)
4 {
5 if (unsorted[i - 1] > unsorted[i])
6 {
7 int key = unsorted[i];
8 int j = i;
9 while (j > 0 && unsorted[j - 1] > key)
10 {
11 unsorted[j] = unsorted[j - 1];
12 j--;
13 }
14 unsorted[j] = key;
15 }
16 }
17 }
在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:
这是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法
比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
通过表格对比
下面的图更容易看懂
---------------------
作者:T9的第三个三角
来源:CSDN
原文:https://blog.csdn.net/dazhaoDai/article/details/81631195
版权声明:本文为博主原创文章,转载请附上博文链接!
zzzhouheng
(1)、把输入规模看成x轴,所花时间/空间看成y轴
O(n)就是y=x,y随x的增长而线性增长。也就是成正比,一条斜线。
O(1)就是y=1,是一个常量,不管x怎么变,y不变,一条与x轴平行的线。
(2)、举个简单的例子,要从0加到n,我们会这么写:
1 2 3 4 |
|
一共算了n次加法,那么就说这个时间复杂度是O(n)。当然O(n)的精确的概念是,是n的最高次方,比如,某个计算共计算了3n+2次,那么这个时间复杂度也是O(n),因为3n+2中的最高次方是n。
如果代码这么写:
1 2 3 4 5 6 |
|
很明显一共算了n^2次加法,那么就说这个时间复杂度是O(n^2),和这个上面的类似,如果某个算法计算了3*n^2+n+1次,其时间复杂度仍然是O(n^2),因为3*n^2+n+1中的最高的次方是n^2,所谓O1就是计算的次数是常量,我们还以上面从0到n的例子来说,如果我们用等差数列的公式,那么,代码可以这么写:
int sum = n*(n+1)/2
不管n有多大(当然不能溢出了),通过上面的公式只需要计算一次,也就是说计算的次数是不变的,这种情况的时间复杂度就可以说成O(1),再比如这个计算,不管其他条件如何变化,均只计算5次就能计算出结果,那么这种情况就是时间复杂度,也就是O(1)。
(3)、
要在hash表中找到一个元素就是O(1)
要在无序数组中找到一个元素就是O(n)
访问数组的第n个元素是O(1)
访问链表的第n个元素是O(n)
也就是说:
如果实现中没有循环就是O(1)
如果实现中有一个循环就是O(n)
(4)、算法复杂度:算法复杂度分为时间时间复杂度和空间复杂度。其作用是:时间复杂度是度量算法执行时间的长短;而空间复杂度是指算法所需存储空间的大小。