- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 【深度学习实战】使用深度学习模型可视化工具——Netron在线可视化深度学习神经网络
量子-Alex
深度学习神经网络人工智能
一直以来,对于深度学习领域的开发者,可视化模型都是非常迫切的需求,今天主要介绍一款可视化工具——NetronNetron有三种使用方式:在线、本地安装、pip安装今天在这里只介绍在线使用这种方式。Netron有个官方的网站:Netron点击进去是这样的一个界面我们可以点击openmodel从本地选择一个预训练模型可以看到这里就显示出来了
- 【深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
阿_旭
AI应用软件开发实战深度学习实战深度学习python行人检测行人追踪过线计数
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- 自然语言处理系列六十一》分布式深度学习实战》TensorFlow深度学习框架
陈敬雷-充电了么-CEO兼CTO
人工智能算法python深度学习自然语言处理AIGCchatgptgpt-3gptai
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列六十一分布式深度学习实战》TensorFlow深度学习框架安装和部署过程总结自然语言处理系列六十一分布式深度学习实战》TensorFlow深度学习框架TensorFlow作为最流行的深度学习框架之一,表达了高层次的机器学习计
- (18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
码农三叔
强化学习从入门到实践人工智能深度学习股票交易模型DRLDoubleDQNDuelingDQN
在本章的这个项目中,实现了一个用于股票交易的DRL模型,旨在展示DRL在金融领域的潜力,提供其在股票交易中应用的实际例子。希望通过本章内容的学习,能够为那些对金融与机器学习交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。传统的交易策略通常依赖于经验、基本面分析或技术分析。然而,这些方法往往无法在快速
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 【科技前沿】用深度强化学习优化电网,让电力调度更聪明!
风清扬雨
人工智能人工智能python智能电网深度强化学习
Hey小伙伴们,今天我要跟大家分享一个超级酷炫的技术应用——深度强化学习在电网优化中的典型案例!如果你对机器学习感兴趣,或是正寻找如何用AI技术解决实际问题的方法,这篇分享绝对不容错过!✨开场白大家好,我是你们的技术小助手!今天我们要聊的是如何利用深度强化学习(DRL)来优化电网的调度,让电力系统变得更智能、更高效。引入话题想象一下,如果你能够通过一种先进的技术手段,自动调整电网中的能源分配,不
- PyTorch深度学习实战(26)—— PyTorch与Multi-GPU
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
当拥有多块GPU时,可以利用分布式计算(DistributedComputation)与并行计算(ParallelComputation)的方式加速网络的训练过程。在这里,分布式是指有多个GPU在多台服务器上,并行指一台服务器上的多个GPU。在工作环境中,使用这两种方式加速模型训练是非常重要的技能。本文将介绍PyTorch中分布式与并行的常见方法,读者需要注意这二者的区别,并关注它们在使用时的注意
- PyTorch深度学习实战(27)—— PyTorch分布式训练
shangjg3
PyTorch深度学习实战深度学习pytorch分布式python
本节将详细介绍如何进行神经网络的分布式训练。其中1.1将结合MPI介绍分布式训练的基本流程,1.2与1.3将分别介绍如何使用torch.distributed以及Horovod进行神经网络的分布式训练。1PyTorch分布式训练1.1使用MPI进行分布式训练下面讲解如何利用MPI进行PyTorch的分布式训练。这里主要介绍的是数据并行的分布式方法:每一块GPU都有同一个模型的副本,仅加载不同的数据
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- drools in java_drools 编程例子
weixin_39829501
droolsinjava
关于Drools更多的介绍可以参考之前的文章。这篇文章主要讲解如何在项目中执行DRL文件并取得结果。ERROR如果遇到这样的错误,大部分情况下是drl规则文件所在的文件夹,没有被项目识别为resources文件夹,在IntelliJIDE中可以使用设置为资源文件夹来解决。Exceptioninthread"main"java.lang.RuntimeException:UnabletogetLas
- 遗传算法与深度学习实战(6)——DEAP框架初体验
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(6)——DEAP框架初体验0.前言1.OneMax问题介绍2.遗传算法要素定义3.使用DEAP解决OneMax问题3.1遗传算法要素配置3.2遗传算法解的进化3.3运行结果3.4eaSimple函数小结系列链接0.前言我们已经了解了DEAP库中的重要数据结构和工具,为了快速掌握DEAP,本节中,我们将介绍DEAP框架下的遗传算法构建流程,并使用DEAP解决简单的OneMax
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- 基于人工智能的期权量化交易
阿岛格
人工智能.量化投资人工智能机器学习大数据强化学习
基于人工智能的期权量化交易基于人工智能的期权量化交易基于人工智能的期权量化交易该文基于人工智能AI的深度强化学习,进行股票期权的量化投资策略研究及回测评估。作者建立了人工智能学习及交易系统。基于实时/历史期权行情大数据挖掘,通过自行开发的人工智能多agent强化学习模型及评估系统(基于Python/Linux),对接实时交易接口进行了实盘环境的交易回测和评估。专题:人工智能.量化投资纲要:一、前言
- 基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
阿_旭
深度学习实战AI应用软件开发实战计算机视觉python行人车辆追踪目标追踪YOLOv8深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的100种中草药智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习pythonYOLOv8中草药识别深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 强化学习入门到不想放弃-1
周博洋K
人工智能
本来想写到深度学习里的,但是线下和别人聊RLHF,和PPO,DPO的时候,我发现大家一脑袋问号,其实也正常,深度学习里面数学的东西没那么多,入门容易一点,强化学习(现在也都谈强化深度学习,或者深度强化学习了)反而没那么要算力,要一堆算法和数学,所以就单开一个系列,专门写强化学习吧其实强化学习,某种程度上比深度学习更早的走进大家的视野,没错,就是那个把李昌镐,柯洁给打败的Alpha第一课我们先讲点基
- 基于YOLOv8深度学习的智能车牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习python车牌识别YOLOv8深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- PyTorch深度学习实战(26)——多对象实例分割
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(26)——多对象实例分割0.前言1.获取并准备数据2.使用Detectron2训练实例分割模型3.对新图像进行推断小结系列链接0.前言我们已经学习了多种图像分割算法,在本节中,我们将学习如何使用Detectron2平台以及Google开放图像数据集执行多对象实例分割任务。Detectron2是Facebook团队打造的人工智能框架,其中包括了高性能的对象检测算法实现,包
- 王树森:学 DRL 走过的弯路太多,想让大家避开(文末赠送福利)
人工智能与算法学习
大家都知道,深度强化学习(DeepReinforcementLearning,DRL)就是应用了神经网络的强化学习。而强化学习是机器学习的一个分支,研究如何基于对环境的观测做出决策,以最大化长期回报。从20世纪80年代至今,强化学习一直是机器学习领域的热门研究方向。大家耳熟能详的经典强化学习方法——Q学习、REINFORCE、actor-critic——就是20世纪80年代提出的,一直沿用至今。而
- KIE
金刚_30bf
版本7.9.0KIE生态图片.pngOptaPlanner是一个本地搜索和优化的工具,独立于DroolsPlanner。UberFire是新的workbench工程,提供类似Eclipse工作台功能。KIE-WB是整合了Guvnor、drools、jbpm的uber工作台。jbpm-wb是虚的。生命周期Author创作使用DRL、BPMN2、决策表、类进行知识创作构建将创作的知识构建为可部署的单元
- 深度学习实战篇之 ( 十八) -- Pytorch之SeNet
fengyuxie
深度学习pytorch人工智能python机器学习
科普知识注意力机制(AttentionMechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。人类视网膜不同的部位具有不同程度的信息处理能力,即敏锐度(Acuity),只有视网膜中央凹部位具有最强的敏锐度。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它
- PyTorch深度学习实战(23)——从零开始实现SSD目标检测
盼小辉丶
深度学习pytorch目标检测
PyTorch深度学习实战(23)——从零开始实现SSD目标检测0.前言1.SSD目标检测模型1.1SSD网络架构1.2利用不同网络层执行边界框和类别预测1.3不同网络层中默认框的尺寸和宽高比1.4数据准备1.5模型训练2.实现SSD目标检测2.1SSD300架构2.2MultiBoxLoss2.训练SSD小结系列链接0.前言SSD(SingleShotMultiBoxDetector)是一种基于
- 深度强化学习系列【1】- 强化学习的背景、基础理论等
cnjs1994
人工智能自动驾驶
引言:这篇博客主要是学习清华大学车辆学院李升波老师(ShengboEbenLi)的PPT课件的一些心得体会。深度强化学习系列【1】-强化学习的背景、基础理论等1.深度强化学习的背景、发展与理论变迁1.1序1.2AlphaGo的崛起1.3Waymo(谷歌收购)加州公共道路无人驾驶项目获批1.4关于生物的神经元数1.5AI的主要类别2.一些典型的问题2.1如何求解-连续、离散空间下的序列决策优化问题?
- 深度强化学习基础【1】-动态规划问题初探(leetcode算法的63题-不同路径II)
cnjs1994
算法动态规划leetcode
引言:这篇博客的算法问题来源于leetcode算法的63题,一个网格世界的机器人运动规划问题。通过这篇博客可以使得读者更加了解强化学习关于动态规划方面的基础知识。这深度强化学习基础【1】-动态规划问题初探(leetcode算法的63题-不同路径II)1.问题描述2.问题分析3.Python编程实现3.1For循环遍历3.2滚动数组实现3.3试验测试结果1.问题描述1个机器人位于一个mxn网格的左上
- PyTorch 2.2 中文官方教程(八)
绝不原创的飞龙
人工智能pytorch
训练一个玛丽奥玩游戏的RL代理原文:pytorch.org/tutorials/intermediate/mario_rl_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0注意点击这里下载完整的示例代码作者:冯元松,SurajSubramanian,王浩,郭宇章。这个教程将带你了解深度强化学习的基础知识。最后,你将实现一个能够自己玩游戏的AI马里奥(使用双深度Q网络)。虽然这个
- 深度强化学习——基本概念(1)
Tandy12356_
深度强化学习人工智能深度学习神经网络
一、基本概念1、状态、动作、智能体可以认为状态就是第一张图的环境,虽然状态和observation还是有区别智能体Agent是马里奥,动作Action就是上下左右的运动2、策略函数(policyΠ)强化学习的重点就是求出这个策略函数,使得在任意一个给定状态S可以做出最应该采取的动作,只要有了policy函数,就可以让超级玛丽自动做出动作来打赢游戏,agent的动作是随机的,根据policy输出的概
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象