用一段式建模FSM 的寄存器输出的时候,必须要综合考虑现态在何种状态转移条件下会进入哪些次态,然后在每个现态的case 分支下分别描述每个次态的输出,这显然不符合思维习惯;而三段式建模描述FSM 的状态机输出时,只需指定case 敏感表为次态寄存器,然后直接在每个次态的case 分支中描述该状态的输出即可,根本不用考虑状态转移条件。本例的FSM 很简单,如果设计的FSM 相对复杂,三段式的描述优势就会凸显出来。
另一方面,三段式描述方法与两段式描述相比,虽然代码结构复杂了一些,但是换来的优势是使FSM 做到了同步寄存器输出,消除了组合逻辑输出的不稳定与毛刺的隐患,而且更利于时序路径分组,一般来说在FPGA/CPLD 等可编程逻辑器件上的综合与布局布线效果更佳。
下面以‘101’序列检测器的FSM来说明三段式FSM的写法:
`timescale 1ns / 1ps
/////////////////////////////////////////////////////////////////
// Company: csic
// Engineer: shengyi
// Create Date: 15:24:44 09/16/2010
// Design Name: seqcheck_fsm3
// Module Name: seqcheck_101
// Project Name: seqcheck_fsm3
// Target Devices: V5 220t
// Tool versions: ise 10.1
// Description: 借'101'序列检测器程序说明FSM的三段式写法
// Dependencies:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
/////////////////////////////////////////////////////////////////
//3-paragraph method to describe FSM
//Describe sequential state transition in the 1st sequential always block
//State transition conditions in the 2nd combinational always block
//Describe the FSM out in the 3rd sequential always block
module seqcheck_101(
clk,
rst,
din,
dout
);
parameter IDLE=4'b0001,S1=4'b0010,S2=4'b0100,S3=4'b1000;
input clk;
input rst;
input din;
output dout;
reg dout;
reg [3:0] current_state,next_state;
//第一部分说明初始状态,和current_state<=next_state
//每一个时钟沿产生一次可能的状态变化
always @(posedge clk)
begin
if(rst)
current_state<=IDLE;
else
current_state<=next_state;
end
//第二部分,状态转移,产生下一状态的整合逻辑
always @(din or current_state)
begin
next_state<=4'bx;
case(current_state)
IDLE:
begin
if(din==1'b1)
next_state<=S1;
else
next_state<=IDLE;
end
S1:
begin
if(din==1'b1)
next_state<=S1;
else
next_state<=S2;
end
S2:
begin
if(din==1'b1)
next_state<=S3;
else
next_state<=IDLE;
end
S3:
begin
if(din==1'b1)
next_state<=S1;
else
next_state<=S2;
end
default:
next_state<=4'bx;
endcase
end
//第三段,产生输出
always @(posedge clk)
begin
if(rst)
dout<=1'b0;
else
begin
case(next_state)
IDLE:dout<=1'b0;
S1:dout<=1'b0;
S2:dout<=1'b0;
S3:dout<=1'b1;
default:dout<=1'bx;
endcase
end
end
endmodule