调了几天遇到很多坑啊!第一次玩Ros的痛!!
1、首先看usb_cam:
直接下载代码:
进入创建好的工作空间:
cd ~/catkin_ws/src
git clone https://github.com/bosch-ros-pkg/usb_cam.git
然后退回到工作空间,编译代码:
cd ~/catkin_ws
catkin_make
编译好之后,添加编译好的文件到环境变量:
source devel/setup.bash
然后接下来测试usb_cam:
先运行usb_cam节点:
rosrun usb_cam usb_cam_node
运行上面命令发现没有显示图像,只看到摄像头打开了。这是因为ros发布的topic是/usb_cam/image_raw。新打开一个终端,可以通过如下命令查看:
rostopic list
结果如下:
/rosout
/rosout_agg
/usb_cam/camera_info
/usb_cam/image_raw
/usb_cam/image_raw/compressed
/usb_cam/image_raw/compressed/parameter_descriptions
/usb_cam/image_raw/compressed/parameter_updates
/usb_cam/image_raw/compressedDepth
/usb_cam/image_raw/compressedDepth/parameter_descriptions
/usb_cam/image_raw/compressedDepth/parameter_updates
/usb_cam/image_raw/theora
/usb_cam/image_raw/theora/parameter_descriptions
/usb_cam/image_raw/theora/parameter_updates
所以我们需要运行如下命令才可以看到图像:
rosrun image_view image_view image:=/usb_cam/image_raw
或者直接写launch文件,这样就不用一个终端运行node,一个终端看图像。新建usb_cam_test.launch:
"usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
<param name="video_device" value="/dev/video0" />
<param name="image_width" value="640" />
<param name="image_height" value="480" />
<param name="pixel_format" value="yuyv" />
<param name="camera_frame_id" value="usb_cam" />
<param name="io_method" value="mmap"/>
"image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
from="image" to="/usb_cam/image_raw"/>
<param name="autosize" value="true" />
其中字段的意义可按照字面理解,这里不再解释。
然后终端直接运行:
roslaunch usb_cam usb_cam_test.launch
2、接下来,我们看usb_cam采集的图像怎么让opencv处理。
ros提供了一个cv_bridge用以转换Ros采集到图像到opencv能处理的图像。
这里主要参考官网对于cv_bridge的解释及其使用:
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
包创建:http://wiki.ros.org/ROS/Tutorials/CreatingPackage
这里需要新建opecv的测试工作空间,opencv测试依赖于:
sensor_msgs
cv_bridge
roscpp
std_msgs
image_transport
进入~/catkin_ws/src,创建测试包:
catkin_create_pkg opencvtest sensor_msgs cv_bridge roscpp std_msgs image_transport rospy roscpp
创建好包之后,进入~/catkin_ws/src/opencvtest/src,将官网的代码保存到此处,命名为opencv_testcam.cpp:
#include <ros/ros.h>
#include<image_transport/image_transport.h>
#include<cv_bridge/cv_bridge.h>
#include<sensor_msgs/image_encodings.h>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
static const std::string OPENCV_WINDOW = "Image window";
class ImageConverter
{
ros::NodeHandle nh_;
image_transport::ImageTransport it_;
image_transport::Subscriber image_sub_;
image_transport::Publisher image_pub_;
public:
ImageConverter()
: it_(nh_)
{
// Subscrive to input video feed and publish output video feed
image_sub_ = it_.subscribe("/usb_cam/image_raw", 1,
&ImageConverter::imageCb, this);
image_pub_ = it_.advertise("/image_converter/output_video", 1);
cv::namedWindow(OPENCV_WINDOW);
}
~ImageConverter()
{
cv::destroyWindow(OPENCV_WINDOW);
}
void imageCb(const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge::CvImagePtr cv_ptr;
try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
// Draw an example circle on the video stream
if (cv_ptr->image.rows > 60 && cv_ptr->image.cols > 60)
cv::circle(cv_ptr->image, cv::Point(50, 50), 10, CV_RGB(255,0,0));
// Update GUI Window
cv::imshow(OPENCV_WINDOW, cv_ptr->image);
cv::waitKey(3);
// Output modified video stream
image_pub_.publish(cv_ptr->toImageMsg());
}
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "image_converter");
ImageConverter ic;
ros::spin();
return 0;
}
以上代码不解释了,可以查看官网的解释。这里需要注意的是代码:
image_sub_ = it_.subscribe("/usb_cam/image_raw", 1,
&ImageConverter::imageCb, this);
这里是usb摄像头的topic,官网默认是/camera/image_raw,这里修改为usb摄像头。
保存退出后,进入上个目录,修改CmakeList.txt,在文件最后添加:
find_package(OpenCV)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(opencv_testcam src/opencv_testcam.cpp)
target_link_libraries(opencv_testcam ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
然后返回工作空间~/catkin_ws执行catkin_make编译工程。
编译完成后,执行
source devel/setup.bash
先打开一个终端运行roscore,用以节点之间的通信交互。
再打开一个终端运行rosrun usbcam usbcam_node
再打开一个终端运行rosrun opencvtest opencv_testcam
之后即可看到opencv处理后摄像头的图像。