- 推荐算法学习记录2.2——kaggle数据集的动漫电影数据集推荐算法实践——基于内容的推荐算法、协同过滤推荐
萱仔学习自我记录
推荐算法学习pythonmatplotlib开发语言
1、基于内容的推荐:这种方法根据项的相关信息(如描述信息、标签等)和用户对项的操作行为(如评论、收藏、点赞等)来构建推荐算法模型。它可以直接利用物品的内容特征进行推荐,适用于内容较为丰富的场景。#1.基于内容的推荐算法fromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.metrics.pairwiseimport
- 免费GPU平台教程,助力你的AI, pytorch tensorflow 支持cuda
zhangfeng1133
人工智能pytorchtensorflow
Colab:https://drive.google.com/drive/home阿里天池实验室:https://tianchi.aliyun.com/60个小时gputianchi.aliyun.com/notebook-ai/天池实验室_实时在线的数据分析协作工具,享受免费计算资源-阿里云天池移动九天:https://jiutian.10086.cn/edu/#/homekagglekaggl
- 49Kaggle 数据分析项目入门实战--绝地求生游戏最终排名预测
Jachin111
绝地求生介绍相信很多都玩过绝地求生这款游戏,其游戏规则主要是将100名玩家空手被扔到一个岛上,这些玩家必须探索、寻找、消灭其他玩家,直到只剩下一个玩家活着。绝地求生很受欢迎。这款游戏销量目前超过5000万份,是有史以来销量排名前五的游戏,每月有数百万活跃玩家。而我们本次实验的任务就是根据玩家在游戏中的种种表现来预测出其在最终的排名。导入数据并预览首先安装实验需要的statsmodels包。!pip
- 李沐《动手学深度学习》课程笔记:15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测
非文的NLP修炼笔记
#李沐《动手学深度学习》课程笔记深度学习人工智能
15实战:Kaggle房价预测+课程竞赛:加州2020年房价预测1.访问和读取数据集importhashlibimportosimporttarfileimportzipfileimportrequestsDATA_HUB=dict()DATA_URL='http://d2l_data.s3-accelerate.amazonaws.com/'defdownload(name,cache_dir=
- Kaggle Intermediate ML Part Two
卢延吉
NewDeveloper数据(Data)ML&ME&GPTDataML
CategoricalVariablesCategoricalvariables,alsoknownasqualitativevariables,areafundamentalconceptinstatisticsanddataanalysis.Here'sabreakdowntohelpyouunderstandthem:Whatarethey?Categoricalvariablesrepre
- 【工业智能】VSB Power Line Fault Detection-chapter1
凭轩听雨199407
学习python制造数据挖掘
VSBPowerLineFaultDetection-chapter1backgrounddataset数据介绍信号处理方法EDAtrainfeatureengineeringmodeltraintry信息来源:KaggleCompetition:VSBPowerLineFaultDetectionbackground中压高架线路绵延上百公里来为城市提供电力。因为距离很远,所以人工检测那些没有立即
- 【工业智能】VSB Power Line Fault Detection-chapter2
凭轩听雨199407
数据挖掘
工业智能】VSBPowerLineFaultDetection-chapter2关键信息依赖版本信息名词术语tricks信息来源:KaggleCompetition:VSBPowerLineFaultDetection分析冠军代码。源文件URL:https://www.kaggle.com/code/mark4h/vsb-1st-place-solution关键信息LGB标准5折验证9个特征所有特
- 机器学习网格搜索超参数优化实战(随机森林) ##4
恒c
机器学习随机森林人工智能
文章目录基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索基于Kaggle电信用户流失案例数据(可在官网进行下载)导入库#基础数据科学运算库importnumpyasnpimportpandasaspd#可视化库importseabornassnsimportmatplotlib.pyplotasplt#时间模块
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- R语言课程论文-飞机失事数据可视化分析
talle2021
数据分析r语言数据分析数据可视化
数据来源:AirplaneCrashesSince1908(kaggle.com)代码参考:ExploringhistoricAirPlanecrashdata|Kaggle数据指标及其含义指标名含义Date事故发生日期(年-月-日)Time当地时间,24小时制,格式为hh:mmLocation事故发生的地点Operator航空公司或飞机的运营商Flight由飞机操作员指定的航班号Route事故前
- Dataframe型数据分析技巧汇总
我叫杨傲天
学习笔记机器学习数据分析数据挖掘
Kaggle如何针对少量数据集比赛的打法。数据降维的几种方法HF.075|时间序列趋势性分析方法汇总机器学习必须了解的7种交叉验证方法(附代码)这个图!Python也能一键绘制了,而且样式更多..散点图,把散点图画出花来综述:机器学习中的模型评价、模型选择与算法选择!表格任务中的深度学习模型性能比较再见Onehot!KaggleMaster的上分神操作!特征重要性评估方法之排列重要性
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- 关于商店销售量的数据处理小问题(Python)
不期而遇__
pythonpandas数据分析大数据
通过学校举行的某次学科竞赛,我接触到了kaggle上的一道题:StoreSales-TimeSeriesForecasting。由于题主资质尚浅,本文将对前期数据处理的一些小问题做出解答,不涉及后续更难的问题。此处放原题链接:StoreSales-TimeSeriesForecasting题主也是看了很多的资料,也看到了CSDN上另外一位大佬写的文章,收获颇多,此处也放一下链接:Kaggle实战:
- 学习笔记 2019-04-30
段勇_bf97
HousePrices-bagging_xgboost+lasso+ridgeKaggle入門級賽題:房價預測FFMPEG视音频编解码零基础学习方法35岁程序员的独家面试经历公司名称公司介绍薪水车辆工程专业33岁简历有些传感器方面的东西20k-35k非渣硕是如何获得百度、京东双SP一些面试经验20k-40k吴以均的简历一个大牛的简历北京航空航天大学毕业生的简历厦门大学软件学院毕业生的简历名称介绍H
- 数据分析基础之《pandas(8)—综合案例》
csj50
机器学习数据分析
一、需求1、现在我们有一组从2006年到2016年1000部最流行的电影数据数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data2、问题1想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?3、问题2对于这一组电影数据,如果我们想看Rating、Runtime(Minutes)的分布情况,应该如何呈现数据?4、问题3对于这
- XGBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
XGBoost在机器学习中被广泛应用于多种场景,特别是在结构化数据的处理上表现出色,XGBoost适用于多种监督学习任务,包括分类、回归和排名问题。在数据挖掘和数据科学竞赛中,XGBoost因其出色的性能而被频繁使用。例如,在Kaggle平台上的许多获奖方案中,XGBoost都发挥了重要作用。此外,它在处理缺失值和大规模数据集上也有很好的表现。XGBoost是一种基于梯度提升决策树(GBDT)的算
- Kaggle Intro Model Validation and Underfitting and Overfitting
卢延吉
NewDeveloper数据(Data)ML&ME&GPT机器学习
ModelValidationModelvalidationisthecornerstoneofensuringarobustandreliablemachinelearningmodel.It'stherigorousassessmentofhowwellyourmodelperformsonunseendata,mimickingreal-worldscenarios.Doneright,it
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- kaggle实战图像分类-Intel Image Classification(附源码)
橘柚jvyou
分类人工智能pytorch计算机视觉深度学习
目录前言数据集加载定义网络训练网络验证网络前言本篇文章会讲解一个使用pytorch这个深度学习框架完成一个kaggle上的图像分类任务。主要会介绍如何加载数据集,导入网络训练数据,保存损失,精度变化曲线和最终模型,以及测试模型在验证集上的好坏。其数据集介绍可以看一下kaggle的网址,这里就不过多介绍。数据集来源:https://www.kaggle.com/datasets/puneet6060
- 机器学习 | 深入集成学习的精髓及实战技巧挑战
亦世凡华、
#机器学习机器学习集成学习人工智能boostingxgboost
目录xgboost算法简介泰坦尼克号乘客生存预测(实操)lightGBM算法简介《绝地求生》玩家排名预测(实操)xgboost算法简介XGBoost全名叫极端梯度提升树,XGBoost是集成学习方法的王牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost。XGBoost在绝大多数的回归和分类问题上表现的十分顶尖,接下来将较详细的介绍XGBoost的算法原理。最优模型构建方法:构建最优模
- 称霸kaggle的XGBoost究竟是啥?
猴小白
一、前言:kaggle神器XGBoost相信入了机器学习这扇门的小伙伴们一定听过XGBoost这个名字,这个看起来朴实无华的boosting算法近年来可算是炙手可热,别的不说,但是大家所熟知的kaggle比赛来看,说XGBoost是“一统天下”都不为过。业界将其冠名“机器学习竞赛的胜利女神”,当然,相信很多小伙伴也看过很多文章称其为“超级女王”。那么问题来了,为啥是女的?(滑稽~)XGBoost全
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- 北京房价预测——Kaggle数据
GavinHarbus
日暮途远,人间何世将军一去,大树飘零概述之前学习了加州房价预测模型,便摩拳擦掌,从kaggle上找到一份帝都房价数据,练练手。实验流程实验数据从Kaggle中选择了帝都北京住房价格的数据集,该数据集摘录了2011~2017年链家网上的北京房价数据。image下载并预览数据下载并解压数据image预览数据image每一行代表一间房,每个房子有26个相关属性,其中以下几个需要备注:DOM:市场活跃天数
- kaggle:泰坦尼克号获救预测_Titanic_EDA##
卜咦
问题数据来源于Kaggle,通过一组列有泰坦尼克号灾难幸存者或幸存者的训练样本集,我们的模型能否基于不包含幸存者信息的给定测试数据集确定这些测试数据集中的乘客是否幸存。代码与数据分析导入必要的包和titanic数据image数据集基本信息将数据分为不同类别,分别为类别型数据和数字型数据类别数据:Survived,Sex,andEmbarked.Ordinal:Pclass数字型数据:Age,Far
- 基于LLM的数据漂移和异常检测
新缸中之脑
LLM
大型语言模型(LLM)的最新进展被证明是许多领域的颠覆性力量(请参阅:通用人工智能的火花:GPT-4的早期实验)。和许多人一样,我们非常感兴趣地关注这些发展,并探索LLM影响数据科学和机器学习领域的工作流程和常见实践的潜力。在我们之前的文章中,我们展示了LLM使用Kaggle竞赛中的表格数据提供预测的潜力。只需很少的努力(即数据清理和/或功能开发),我们基于LLM的模型就可以在几个竞赛参赛作品中获
- Xgboost
大雄的学习人生
在最近的Kaggle竞赛中,利用Xgboost的队伍经常能问鼎冠军,那么问题来了,Xgboost为什么这么强呢?算法释义Xgboost是一种带有正则化项,并利用损失函数泰勒展开式中二阶导数信息优化求解并增加一些计算优化的梯度提升树。Xgboost的目标函数定义为:其中l为损失函数,Ω(ft(x))是用于惩罚ft(x)模型复杂度的正则化项。根据上述目标函数可以得到Xgboost在每一轮前向分步算法中
- 机器学习数据预处理方法(数据重编码) ##2
恒c
机器学习人工智能数据分析
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)一、离散字段的数据重编码1.OrdinalEncoder自然数排序2.OneHotEncoder独热编码3.ColumnTransformer转化流水线二、连续字段的特征变换1.标准化(Standardization)和归一化(Normalization)2.连续变量分箱3.连续变量特征转化的ColumnTransform
- 机器学习逻辑回归模型训练与超参数调优 ##3
恒c
机器学习逻辑回归人工智能
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)逻辑回归模型训练逻辑回归的超参数调优基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理部分可见:机器学习数据预处理方法(数据重编码)逻辑回归模型训练fromsklearn.metricsimportaccuracy_score,recall_score,precision_score,f1_score,ro
- 50Kaggle 数据分析项目入门实战--分销商产品未来销售情况预测
Jachin111
分销商产品未来销售情况预测未来销售额预测介绍对于一个产品来说,其未来销售额的预测是一个重要的指标,也是一项重要的任务。例如,对于一部苹果手机来说。在上市之前,得先对销售额进行预测,才能确定出货量的大小。本次实验来源于Kaggle上的一个挑战,即:未来销售额预测,由俄罗斯的1C-Company软件分销公司发起,并提供数据。而本次实验的任务就是根据提供的数据,包含商品类别、商品名称、商店等信息和商品的
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found