智能优化算法学习清单

1、遗传算法
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。

2、模拟退火算法
是用来求解最优化问题的算法。比如著名的TSP问题,函数最大值最小值问题等等。

3、粒子群优化算法
和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

4、蚁群算法
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。

5、免疫算法
免疫算法是一种具有生成+检测 (generate and test)的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。

6、克隆选择算法
根据克隆选择原理设计的免疫算法。解决问题时,一般把问题定义为抗原,而问题的解就是抗体集合。在特定的形态空间中,随机产生的抗体试图与抗原发生匹配,即尝试解决问题。匹配度高的抗体有可能产生更好的解,被赋予更大的克隆概率参与下一次匹配。

7、和声搜索算法
和声搜索(Harmony Search, HS)算法是一种新颖的智能优化算法。类似于遗传算法对生物进化的模仿、模拟退火算法对物理退火的模拟以及粒子群优化算法对鸟群的模仿等,和声算法模拟了音乐演奏的原理。

8、禁忌搜索算法
禁忌(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。

9、差分进化算法
它是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化的随机模型,通过反复迭代,使得那些适应环境的个体被保存了下来。但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒性,且不需要借助问题的特征信息,适于求解一些利用常规的数学规划方法所无法求解的复杂环境中的优化问题。

10、BP神经网络算法
BP神经网络是一种基于有监督的学习,使用非线性可导函数作为传递函数的前馈神经网络。

你可能感兴趣的:(智能算法与机器学习)