二分图算法

二分图基础知识

首先什么是二分图

顾名思义就是能分成两个部分的图

要注意的是,‘分’的是点并且这两个集合(这里我们称作X集合和Y集合)内部所有的点之间没有边相连,也就是说X集合中任何两点之间都不会有边相连, Y亦然

 

定理1:无向图G为二分图的一个充要条件是 1、G中至少包含两个顶点  2、G中所有的回路长度都必须是偶数

 

接下来是一些概念:

匹配:设G=为二分图,如果 M⊆E,并且 M 中两点没有任何两点有公共端点(被其他匹配的边共用),则成M为G的一个匹配。【也就是说匹配的实质是一些边的集合。】

最大匹配:边数最多的匹配

完备匹配与完全匹配:若 X 中所有的顶点都是匹配 M 中的端点。则称 M 为X的完备匹配。 若M既是 X-完备匹配又是 Y-完备匹配,则称M 为 G 的完全匹配。

最小点覆盖:用尽可能少的点去覆盖所有的边【最小点覆盖集是点的集合,其个数为最小点覆盖数】

最大点独立:跟网络流中的最大点权独立集有点类似,这里指的是最大独立的个数

 

接下来是二分图的一些性质:

设无向图G有n个顶点,并且没有孤立顶点,那么,

1、点覆盖数 + 点独立数 = n

2、最小点覆盖数 = 二分图的最大匹配

3、最大点独立数 = n - 最小点覆盖数 = n - 最大匹配

 

二分图的判定:

判断一个图是不是二分图有两条1、n>= 2   2、不存在奇圈

我们可以用黑白染色的方法进行判断

交叉染色法

    下面着重介绍下交叉染色法的定义与原理

    首先任意取出一个顶点进行染色,和该节点相邻的点有三种情况:

          1.未染色    那么继续染色此节点(染色为另一种颜色)

          2.已染色但和当前节点颜色不同      跳过该点

          3.已染色并且和当前节点颜色相同       返回失败(该图不是二分图)

    下面在拓展两个概念:

     (1) 如果一个双连通分量内的某些顶点在一个奇圈中(即双连通分量含有奇圈),那么这个双连通分量的其他顶点也在某个奇圈中;

     第一个条件的证明:我们假设有一个奇圈,因为是点双,没有割点,必然有紧挨着的圈,假设这个是偶数圈,则,这个偶数圈必然能和原来的奇圈组成新的奇圈(因为:新的圈=(奇数圈-k)+(偶数圈-k)=奇数+偶数-偶数=奇数,k是共同边上的点数

     (2) 如果一个双连通分量含有奇圈,则他必定不是一个二分图。反过来也成立,这是一个充要条件。

const int maxn = 105;

int col[maxn];

bool is_bi(int u) {
    for(int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if(col[v] == col[u]) return false;
        if(!col[v]) {
            col[v] = 3 - col[u];
            if(!is_bi(v)) return false;
        }
    }
    return true;
}

二分图的最大匹配、完美匹配和匈牙利算法

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 UU 和VV ,使得每一条边都分别连接UU、VV中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

Bipartite Graph(1)  Bipartite Graph(2)  Matching  Maximum Matching

我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

0

基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

5

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

6

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。

匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

7   8    9

这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。

下面给出匈牙利算法的 DFS 和 BFS 版本的代码:

// 顶点、边的编号均从 0 开始
// 邻接表储存

struct Edge
{
    int from;
    int to;
    int weight;

    Edge(int f, int t, int w):from(f), to(t), weight(w) {}
};

vector G[__maxNodes]; /* G[i] 存储顶点 i 出发的边的编号 */
vector edges;
typedef vector::iterator iterator_t;
int num_nodes;
int num_left;
int num_right;
int num_edges;
int matching[__maxNodes]; /* 存储求解结果 */
int check[__maxNodes];

bool dfs(int u)
{
    for (iterator_t i = G[u].begin(); i != G[u].end(); ++i) { // 对 u 的每个邻接点
        int v = edges[*i].to;
        if (!check[v]) {     // 要求不在交替路中
            check[v] = true; // 放入交替路
            if (matching[v] == -1 || dfs(matching[v])) {
                // 如果是未盖点,说明交替路为增广路,则交换路径,并返回成功
                matching[v] = u;
                matching[u] = v;
                return true;
            }
        }
    }
    return false; // 不存在增广路,返回失败
}

int hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    for (int u=0; u < num_left; ++u) {
        if (matching[u] == -1) {
            memset(check, 0, sizeof(check));
            if (dfs(u))
                ++ans;
        }
    }
    return ans;
}
queue Q;
int prev[__maxNodes];
int Hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    memset(check, -1, sizeof(check));
    for (int i=0; i= 0) { // 此点为匹配点
                            prev[matching[v]] = u;
                        } else { // 找到未匹配点,交替路变为增广路
                            flag = true;
                            int d=u, e=v;
                            while (d != -1) {
                                int t = matching[d];
                                matching[d] = e;
                                matching[e] = d;
                                d = prev[d];
                                e = t;
                            }
                        }
                    }
                }
                Q.pop();
            }
            if (matching[i] != -1) ++ans;
        }
    }
    return ans;
}

匈牙利算法的要点如下

  1. 从左边第 1 个顶点开始,挑选未匹配点进行搜索,寻找增广路。

    1. 如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数 +1,停止搜索。
    2. 如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。
  2. 由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS 版本通过函数调用隐式地使用一个栈,而 BFS 版本使用 prev 数组。

性能比较

两个版本的时间复杂度均为O(V⋅E)O(V⋅E)。DFS 的优点是思路清晰、代码量少,但是性能不如 BFS。我测试了两种算法的性能。对于稀疏图,BFS 版本明显快于 DFS 版本;而对于稠密图两者则不相上下。在完全随机数据 9000 个顶点 4,0000 条边时前者领先后者大约 97.6%,9000 个顶点 100,0000 条边时前者领先后者 8.6%, 而达到 500,0000 条边时 BFS 仅领先 0.85%。

补充定义和定理:

最大匹配数:最大匹配的匹配边的数目

最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择

最大独立数:选取最多的点,使任意所选两点均不相连

最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

定理2:最大匹配数 = 最大独立数

定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

 

你可能感兴趣的:(数据结构与算法)