- YOLOv8数据增强
热心小张
研究生yolov8
1.找到augment.py(ultralytics/data/augment.py),修改对应内容#TransformsT=[A.Blur(p=0.01),A.MedianBlur(p=0.01),A.ToGray(p=0.01),A.CLAHE(p=0.01),A.RandomBrightnessContrast(p=0.0),A.RandomGamma(p=0.0),A.ImageCompr
- 计算机视觉中的数据增强方法总结
CV技术指南(公众号)
CV技术总结计算机视觉深度学习卷积神经网络
前言:在计算机视觉方向,数据增强的本质是人为地引入人视觉上的先验知识,可以很好地提升模型的性能,目前基本成为模型的标配。最近几年逐渐出了很多新的数据增强方法,在本文将对数据增强做一个总结。本文介绍了数据增强的作用,数据增强的分类,数据增强的常用方法,一些特殊的方法,如Cutout,RandomErasing,Mixup,Hide-and-Seek,CutMix,GridMask,FenceMask
- 第3篇:LangChain的架构总览与设计理念
Gemini技术窝
langchain架构大数据人工智能AIGCnlp
LangChain库是一个专为自然语言处理(NLP)设计的强大工具包,致力于简化复杂语言模型链的构建和执行。在本文中,我们将深入解析LangChain库的架构,详细列出其核心组件、设计理念及其在不同场景中的应用,并讨论其优缺点。文章目录1.LangChain库简介2.核心组件2.1数据输入模块作用2.2数据预处理模块作用2.3数据增强模块作用2.4数据加载与批处理模块作用2.5模型训练模块作用2.
- pytorh基础知识和函数的学习:torchvision.transforms()
深蓝海拓
机器视觉和人工智能学习学习pytorch
transforms是PyTorch的torchvision库中用于图像处理的一个模块。它提供了一组工具,用于在图像数据集上进行常见的预处理和数据增强操作,以便更好地训练深度学习模型。以下是一些常用的torchvision.transforms转换:基础图像转换:transforms.ToTensor():将PIL图像或NumPy数组转换为PyTorch的张量,并将像素值范围从[0,255]缩放到
- 深度学习速通系列:鲁棒性和稳定性
Ven%
深度学习速通系列深度学习自然语言处理人工智能pythonnlp
在机器学习中,鲁棒性和稳定性是评估模型性能的两个关键指标,它们对于确保模型在实际应用中的可靠性至关重要。鲁棒性(Robustness)定义:鲁棒性指的是模型对于输入数据的扰动、噪声、异常值或对抗性攻击的抵抗能力。一个鲁棒的模型能够在面对这些不利因素时保持其性能。提高鲁棒性的方法:数据增强:通过对训练数据进行变换(如旋转、缩放、裁剪等),使模型能够更好地泛化到未见过的数据。对抗训练:在训练过程中引入
- 6. 深度学习中的正则化技术:防止过拟合
Network_Engineer
机器学习深度学习人工智能
引言过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。1.过拟合的原因与影响过拟合通常发生在模型的复
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 训练过程训练集的准确率都低于验证集和测试集的准确率可能的原因
Wils0nEdwards
python人工智能深度学习
每一个epoch训练集的准确率都低于验证集和测试集的准确率,这种现象不太常见,可能有以下几个原因:1.数据增强过强如果你在训练集上使用了较强的数据增强(如随机翻转、ColorJitter等),而验证集和测试集仅进行了基础的预处理。这会导致训练集的样本更具挑战性,模型在训练集上的表现不如在验证集和测试集上的表现。2.训练和验证集分布差异训练集、验证集和测试集的分布可能存在差异。如果训练集包含更多的噪
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- 4. 生成对抗网络(GAN):生成模型的崛起
Network_Engineer
机器学习python深度学习机器学习算法人工智能
引言生成对抗网络(GAN)是近年来深度学习领域中最具创新性和影响力的模型之一。GAN通过生成器和判别器的对抗性训练,能够生成逼真的图像、音频、文本等数据,广泛应用于图像生成、数据增强、风格迁移等任务中。本篇博文将深入解析GAN的基本原理、训练过程,以及其在各类生成任务中的应用。1.GAN的基本架构生成对抗网络(GAN)由两个核心部分组成:生成器(Generator)和判别器(Discriminat
- 深度学习100问44:如何避免模型出现过拟合现象
不断持续学习ing
人工智能自然语言处理机器学习
嘿,想让你的模型不出现过拟合现象?来看看这些妙招吧!一、增加数据量这就好比让学生多做各种不同的练习题。数据多了,模型就能学到更普遍的规律,而不是只记住那一点点数据里的小细节。你可以去收集更多真实的数据,或者用数据增强的办法。就像在图像识别里,把图片转一转、翻一翻、剪一剪,这样数据就变得更多样啦。二、简化模型要是模型太复杂,那就像盖了一座超级华丽的城堡,容易记住一些不该记的东西。那就把模型弄得简单点
- PyTorch库学习之torch.repeat_interleave函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.repeat_interleave函数一、简介torch.repeat_interleave是PyTorch库中的一个函数,它用于重复张量中的元素。这个函数可以沿着指定的维度重复张量中的每个元素,返回一个新的张量。当不指定维度时,会将输入张量展平,并重复每个元素。这个函数在处理序列数据或生成数据增强样本时非常有用。二、语法和参数语法:torch.repeat_in
- 第T10周:数据增强
OreoCC
深度学习人工智能tensorflow2
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**第10周:数据增强难度:夯实基础⭐⭐语言:Python3、TensorFlow2要求:学会在代码中使用数据增强手段来提高acc请探索更多的数据增强手段并记录在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 基于PIL实现亮度、噪声、随机黑块数据增强
小陈phd
pythonnumpy人工智能
importosimportshutilfromPILimportImage,ImageEnhanceimportnumpyasnpimportrandomfromtqdmimporttqdm#ColorJitteringfunctiondefapply_color_jitter(image,brightness=0.5,contrast=0.5,saturation=0.5):"""Applyc
- 图像数据增强
菜鸟瞎编
一、做随机亮度、对比度、饱和度修改,使用tensorflowAPI核心部分是aug_op函数,这可是菜鸟的心血啊!#coding:utf-8importtensorflowastfimportcv2importrandomimportsysimportosimportshutil#os.environ["CUDA_VISIBLE_DEVICES"]=""defrandom_normal(img,m
- 基于Diffusion Model的数据增强方法应用——毕业设计 其三
大鸟仙童
课程设计计算机视觉深度学习
文章目录题目简介前言StableDiffusionLatentdiffusion自动编码器(VAE)U-NetText-EncoderStableDiffusion的推理过程从零开始配置实验环境IDEAnacondaCUDA和CuDNNCuDNNStableDiffusion的本地部署运行测试总结题目简介笔者个人的毕业设计课题如下:简介:使用预训练的DiffusionModel图像生成模型生成图像
- 【面经——《广州敏视数码科技有限公司》——图像处理算法工程师-深度学习方向】
有情怀的机械男
面试offer面经
目录笔试HR面专业面——60多分钟主管面反问:笔试8道题——简答题+1道编程苹果、香蕉、梨、菠萝,彩色图像如何进行分类?一辆带车牌的汽车,图像亮度整体呈现偏亮状态,如何去提高图像的清晰度?并设计一个准确定位车牌位置的方案。训练集和测试集各5000张,进行目标检测,写出选择的模型以及设计方案?样本量不足怎么去提高检测的准确性?数据增强梯度下降法的优化算法有哪些,各有什么优缺点?损失函数有哪些?优缺点
- 【论文阅读笔记】AutoAugment:Learning Augmentation Strategies from Data
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
AutoAugment:LearningAugmentationStrategiesfromData摘要研究方法:本文描述了一种名为AutoAugment的简单程序,通过这个程序可以自动寻找改进的数据增强策略。研究设计了一个策略空间,其中策略包含多个子策略,在每个小批量数据中针对每张图片随机选择一个子策略。每个子策略由两个操作组成,每个操作是图像处理函数(如平移、旋转或剪切),以及应用这些函数的概
- 【论文阅读笔记】Contrastive Learning with Stronger Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
ContrastiveLearningwithStrongerAugmentations摘要基于提供的摘要,该论文的核心焦点是在对比学习领域提出的一个新框架——利用强数据增强的对比学习(ContrastiveLearningwithStrongerAugmentations,简称CLSA)。以下是对摘要的解析:问题陈述:表征学习(representationlearning)已在对比学习方法的推动
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- MogaNet实战:使用 MogaNet实现图像分类任务(二)
AI浩
图像分类人工智能人工智能深度学习计算机视觉
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:MogaNet实战:使用MogaNet实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解
- 科普:坐标系中几何变换及常见公式
9命怪猫
几何学计算机视觉几何学
几何变换”通常指的是对图像进行平移、旋转、缩放、翻转等操作,以改变图像的位置、大小和方向。这些几何变换常用于图像处理、计算机视觉和深度学习领域,用于数据增强、图像预处理、物体检测等任务。具体来说,几何变换包括以下几种主要操作:平移:将图像沿着水平和垂直方向移动一定的距离。旋转:围绕图像中心点或指定点进行旋转,改变图像的方向。缩放:按照指定的比例增大或缩小图像的尺寸。翻转:沿水平或垂直方向对图像进行
- 大模型注入领域知识,模型体验和Token重复知识
lichunericli
LLM人工智能语言模型
1如何给LLM注入领域知识?给LLM(低层次模型,如BERT、GPT等)注入领域知识的方法有很多。以下是一些建议:数据增强:在训练过程中,可以通过添加领域相关的数据来增强模型的训练数据。这可以包括从领域相关的文本中提取示例、对现有数据进行扩充或生成新的数据。迁移学习:使用预训练的LLM模型作为基础,然后在特定领域的数据上进行微调。这样可以利用预训练模型学到的通用知识,同时使其适应新领域。领域专家标
- stupid_brain
MORE_77
深度学习深度学习python人工智能
前言:本文用于记录本人AI新手期间犯的各种错误,时常更新。正文开始:读取数据的num_worker设置过少,以至于训练速度卡在读取数据上。训练集数据处理:数据增强有利于解决过拟合问题。模型:relu少写、batchnorm位置写错。test记得关闭梯度更新withtorch.no_grad():
- 基于轻量级模型YOLOX-Nano的菜品识别系统
钟良堂
笔记深度学习目标检测yolox-nano菜品识别
工程Gitee地址:https://gitee.com/zhong-liangtang/ncnn-android-yolox-nano一、YOLOX简介YOLOX是一个在2021年被旷视科技公司提出的高性能且无锚框(Anchor-free)的检测器,在YOLO系列的基础上吸收近年来目标检测学术界的最新成果,如解耦头(DecoupledHead)、数据增强、无锚框、标签分配策略SimOTA(Simp
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- Graph Contrastive Learning with Augmentations
tutoujiehegaosou
Graph笔记
GraphCL学习笔记Abstract提出GNN对自监督学习和pre-training较少。本文提出了GraphCL框架,用于学习图的无监督表示。设计四种类型的数据增强,在不同的settings(learningrate,batchsize,dropout参数)下,研究这四种增强对不同数据集的影响。Introduction大多数graph-level的任务场景,GNN都是在监督的情况下进行端到端的
- Vim实战:使用 Vim实现图像分类任务(二)
静静AI学堂
图像分类实战vim分类深度学习
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:Vim实战:使用Vim实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实
- imgaug数据增强神器:增强器一览
a flying bird
计算机视觉计算机视觉
官网:imgaug—imgaug0.4.0documentationhttps://imgaug.readthedocs.io/en/latest/github:GitHub-aleju/imgaug:Imageaugmentationformachinelearningexperiments.imgaug数据增强神器:增强器一览_iaa图像增强改变颜色-CSDN博客文章浏览阅读9.8k次,点赞3
- ztree异步加载
3213213333332132
JavaScriptAjaxjsonWebztree
相信新手用ztree的时候,对异步加载会有些困惑,我开始的时候也是看了API花了些时间才搞定了异步加载,在这里分享给大家。
我后台代码生成的是json格式的数据,数据大家按各自的需求生成,这里只给出前端的代码。
设置setting,这里只关注async属性的配置
var setting = {
//异步加载配置
- thirft rpc 具体调用流程
BlueSkator
中间件rpcthrift
Thrift调用过程中,Thrift客户端和服务器之间主要用到传输层类、协议层类和处理类三个主要的核心类,这三个类的相互协作共同完成rpc的整个调用过程。在调用过程中将按照以下顺序进行协同工作:
(1) 将客户端程序调用的函数名和参数传递给协议层(TProtocol),协议
- 异或运算推导, 交换数据
dcj3sjt126com
PHP异或^
/*
* 5 0101
* 9 1010
*
* 5 ^ 5
* 0101
* 0101
* -----
* 0000
* 得出第一个规律: 相同的数进行异或, 结果是0
*
* 9 ^ 5 ^ 6
* 1010
* 0101
* ----
* 1111
*
* 1111
* 0110
* ----
* 1001
- 事件源对象
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- MySql配置及相关命令
g21121
mysql
MySQL安装完毕后我们需要对它进行一些设置及性能优化,主要包括字符集设置,启动设置,连接优化,表优化,分区优化等等。
一 修改MySQL密码及用户
 
- [简单]poi删除excel 2007超链接
53873039oycg
Excel
采用解析sheet.xml方式删除超链接,缺点是要打开文件2次,代码如下:
public void removeExcel2007AllHyperLink(String filePath) throws Exception {
OPCPackage ocPkg = OPCPac
- Struts2添加 open flash chart
云端月影
准备以下开源项目:
1. Struts 2.1.6
2. Open Flash Chart 2 Version 2 Lug Wyrm Charmer (28th, July 2009)
3. jofc2,这东西不知道是没做好还是什么意思,好像和ofc2不怎么匹配,最好下源码,有什么问题直接改。
4. log4j
用eclipse新建动态网站,取名OFC2Demo,将Struts2 l
- spring包详解
aijuans
spring
下载的spring包中文件及各种包众多,在项目中往往只有部分是我们必须的,如果不清楚什么时候需要什么包的话,看看下面就知道了。 aspectj目录下是在Spring框架下使用aspectj的源代码和测试程序文件。Aspectj是java最早的提供AOP的应用框架。 dist 目录下是Spring 的发布包,关于发布包下面会详细进行说明。 docs&nb
- 网站推广之seo概念
antonyup_2006
算法Web应用服务器搜索引擎Google
持续开发一年多的b2c网站终于在08年10月23日上线了。作为开发人员的我在修改bug的同时,准备了解下网站的推广分析策略。
所谓网站推广,目的在于让尽可能多的潜在用户了解并访问网站,通过网站获得有关产品和服务等信息,为最终形成购买决策提供支持。
网站推广策略有很多,seo,email,adv
- 单例模式,sql注入,序列
百合不是茶
单例模式序列sql注入预编译
序列在前面写过有关的博客,也有过总结,但是今天在做一个JDBC操作数据库的相关内容时 需要使用序列创建一个自增长的字段 居然不会了,所以将序列写在本篇的前面
1,序列是一个保存数据连续的增长的一种方式;
序列的创建;
CREATE SEQUENCE seq_pro
2 INCREMENT BY 1 -- 每次加几个
3
- Mockito单元测试实例
bijian1013
单元测试mockito
Mockito单元测试实例:
public class SettingServiceTest {
private List<PersonDTO> personList = new ArrayList<PersonDTO>();
@InjectMocks
private SettingPojoService settin
- 精通Oracle10编程SQL(9)使用游标
bijian1013
oracle数据库plsql
/*
*使用游标
*/
--显示游标
--在显式游标中使用FETCH...INTO语句
DECLARE
CURSOR emp_cursor is
select ename,sal from emp where deptno=1;
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
begin
ope
- 【Java语言】动态代理
bit1129
java语言
JDK接口动态代理
JDK自带的动态代理通过动态的根据接口生成字节码(实现接口的一个具体类)的方式,为接口的实现类提供代理。被代理的对象和代理对象通过InvocationHandler建立关联
package com.tom;
import com.tom.model.User;
import com.tom.service.IUserService;
- Java通信之URL通信基础
白糖_
javajdkwebservice网络协议ITeye
java对网络通信以及提供了比较全面的jdk支持,java.net包能让程序员直接在程序中实现网络通信。
在技术日新月异的现在,我们能通过很多方式实现数据通信,比如webservice、url通信、socket通信等等,今天简单介绍下URL通信。
学习准备:建议首先学习java的IO基础知识
URL是统一资源定位器的简写,URL可以访问Internet和www,可以通过url
- 博弈Java讲义 - Java线程同步 (1)
boyitech
java多线程同步锁
在并发编程中经常会碰到多个执行线程共享资源的问题。例如多个线程同时读写文件,共用数据库连接,全局的计数器等。如果不处理好多线程之间的同步问题很容易引起状态不一致或者其他的错误。
同步不仅可以阻止一个线程看到对象处于不一致的状态,它还可以保证进入同步方法或者块的每个线程,都看到由同一锁保护的之前所有的修改结果。处理同步的关键就是要正确的识别临界条件(cri
- java-给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
bylijinnan
java
public class DeleteExtraSpace {
/**
* 题目:给定字符串,删除开始和结尾处的空格,并将中间的多个连续的空格合并成一个。
* 方法1.用已有的String类的trim和replaceAll方法
* 方法2.全部用正则表达式,这个我不熟
* 方法3.“重新发明轮子”,从头遍历一次
*/
public static v
- An error has occurred.See the log file错误解决!
Kai_Ge
MyEclipse
今天早上打开MyEclipse时,自动关闭!弹出An error has occurred.See the log file错误提示!
很郁闷昨天启动和关闭还好着!!!打开几次依然报此错误,确定不是眼花了!
打开日志文件!找到当日错误文件内容:
--------------------------------------------------------------------------
- [矿业与工业]修建一个空间矿床开采站要多少钱?
comsci
地球上的钛金属矿藏已经接近枯竭...........
我们在冥王星的一颗卫星上面发现一些具有开采价值的矿床.....
那么,现在要编制一个预算,提交给财政部门..
- 解析Google Map Routes
dai_lm
google api
为了获得从A点到B点的路劲,经常会使用Google提供的API,例如
[url]
http://maps.googleapis.com/maps/api/directions/json?origin=40.7144,-74.0060&destination=47.6063,-122.3204&sensor=false
[/url]
从返回的结果上,大致可以了解应该怎么走,但
- SQL还有多少“理所应当”?
datamachine
sql
转贴存档,原帖地址:http://blog.chinaunix.net/uid-29242841-id-3968998.html、http://blog.chinaunix.net/uid-29242841-id-3971046.html!
------------------------------------华丽的分割线--------------------------------
- Yii使用Ajax验证时,如何设置某些字段不需要验证
dcj3sjt126com
Ajaxyii
经常像你注册页面,你可能非常希望只需要Ajax去验证用户名和Email,而不需要使用Ajax再去验证密码,默认如果你使用Yii 内置的ajax验证Form,例如:
$form=$this->beginWidget('CActiveForm', array( 'id'=>'usuario-form',&
- 使用git同步网站代码
dcj3sjt126com
crontabgit
转自:http://ued.ctrip.com/blog/?p=3646?tn=gongxinjun.com
管理一网站,最开始使用的虚拟空间,采用提供商支持的ftp上传网站文件,后换用vps,vps可以自己搭建ftp的,但是懒得搞,直接使用scp传输文件到服务器,现在需要更新文件到服务器,使用scp真的很烦。发现本人就职的公司,采用的git+rsync的方式来管理、同步代码,遂
- sql基本操作
蕃薯耀
sqlsql基本操作sql常用操作
sql基本操作
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:30:33 星期一
&
- Spring4+Hibernate4+Atomikos3.3多数据源事务管理
hanqunfeng
Hibernate4
Spring3+后不再对JTOM提供支持,所以可以改用Atomikos管理多数据源事务。Spring2.5+Hibernate3+JTOM参考:http://hanqunfeng.iteye.com/blog/1554251Atomikos官网网站:http://www.atomikos.com/ 一.pom.xml
<dependency>
<
- jquery中两个值得注意的方法one()和trigger()方法
jackyrong
trigger
在jquery中,有两个值得注意但容易忽视的方法,分别是one()方法和trigger()方法,这是从国内作者<<jquery权威指南》一书中看到不错的介绍
1) one方法
one方法的功能是让所选定的元素绑定一个仅触发一次的处理函数,格式为
one(type,${data},fn)
&nb
- 拿工资不仅仅是让你写代码的
lampcy
工作面试咨询
这是我对团队每个新进员工说的第一件事情。这句话的意思是,我并不关心你是如何快速完成任务的,哪怕代码很差,只要它像救生艇通气门一样管用就行。这句话也是我最喜欢的座右铭之一。
这个说法其实很合理:我们的工作是思考客户提出的问题,然后制定解决方案。思考第一,代码第二,公司请我们的最终目的不是写代码,而是想出解决方案。
话粗理不粗。
付你薪水不是让你来思考的,也不是让你来写代码的,你的目的是交付产品
- 架构师之对象操作----------对象的效率复制和判断是否全为空
nannan408
架构师
1.前言。
如题。
2.代码。
(1)对象的复制,比spring的beanCopier在大并发下效率要高,利用net.sf.cglib.beans.BeanCopier
Src src=new Src();
BeanCopier beanCopier = BeanCopier.create(Src.class, Des.class, false);
- ajax 被缓存的解决方案
Rainbow702
JavaScriptjqueryAjaxcache缓存
使用jquery的ajax来发送请求进行局部刷新画面,各位可能都做过。
今天碰到一个奇怪的现象,就是,同一个ajax请求,在chrome中,不论发送多少次,都可以发送至服务器端,而不会被缓存。但是,换成在IE下的时候,发现,同一个ajax请求,会发生被缓存的情况,只有第一次才会被发送至服务器端,之后的不会再被发送。郁闷。
解决方法如下:
① 直接使用 JQuery提供的 “cache”参数,
- 修改date.toLocaleString()的警告
tntxia
String
我们在写程序的时候,经常要查看时间,所以我们经常会用到date.toLocaleString(),但是date.toLocaleString()是一个过时 的API,代替的方法如下:
package com.tntxia.htmlmaker.util;
import java.text.SimpleDateFormat;
import java.util.
- 项目完成后的小总结
xiaomiya
js总结项目
项目完成了,突然想做个总结但是有点无从下手了。
做之前对于客户端给的接口很模式。然而定义好了格式要求就如此的愉快了。
先说说项目主要实现的功能吧
1,按键精灵
2,获取行情数据
3,各种input输入条件判断
4,发送数据(有json格式和string格式)
5,获取预警条件列表和预警结果列表,
6,排序,
7,预警结果分页获取
8,导出文件(excel,text等)
9,修